Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for classification inference (cross validation). | |
""" | |
import sys | |
import os | |
import argparse | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import * | |
from finetune.run_classifier import Classifier | |
from inference.run_classifier_infer import * | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
# Path options. | |
parser.add_argument("--load_model_path", default=None, type=str, | |
help="Path of the classfier model.") | |
parser.add_argument("--test_path", type=str, | |
help="Path of the testset.") | |
parser.add_argument("--test_features_path", default=None, type=str, | |
help="Path of the test features for stacking.") | |
parser.add_argument("--config_path", default="models/bert/base_config.json", type=str, | |
help="Path of the config file.") | |
# Model options. | |
model_opts(parser) | |
# Inference options. | |
parser.add_argument("--batch_size", type=int, default=64, | |
help="Batch size.") | |
parser.add_argument("--seq_length", type=int, default=128, | |
help="Sequence length.") | |
parser.add_argument("--labels_num", type=int, required=True, | |
help="Number of prediction labels.") | |
# Tokenizer options. | |
tokenizer_opts(parser) | |
# Output options. | |
parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") | |
parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") | |
# Cross validation options. | |
parser.add_argument("--folds_num", type=int, default=5, | |
help="The number of folds for cross validation.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model and load parameters. | |
args.soft_targets, args.soft_alpha = False, False | |
dataset = read_dataset(args, args.test_path) | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
seg = torch.LongTensor([sample[1] for sample in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
print("The number of prediction instances: ", instances_num) | |
test_features = [[] for _ in range(args.folds_num)] | |
for fold_id in range(args.folds_num): | |
load_model_name = ".".join(args.load_model_path.split(".")[:-1]) | |
load_model_suffix = args.load_model_path.split(".")[-1] | |
model = Classifier(args) | |
model = load_model(model, load_model_name+"-fold_"+str(fold_id)+"."+load_model_suffix) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
model.eval() | |
for _, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): | |
src_batch = src_batch.to(device) | |
seg_batch = seg_batch.to(device) | |
with torch.no_grad(): | |
_, logits = model(src_batch, None, seg_batch) | |
prob = nn.Softmax(dim=1)(logits) | |
prob = prob.cpu().numpy().tolist() | |
test_features[fold_id].extend(prob) | |
test_features = np.array(test_features) | |
test_features = np.mean(test_features, axis=0) | |
np.save(args.test_features_path, test_features) | |
if __name__ == "__main__": | |
main() | |