Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for image classification inference. | |
""" | |
import sys | |
import os | |
import torch | |
import argparse | |
import collections | |
import torch.nn as nn | |
from torchvision import transforms | |
from torchvision.io import read_image | |
from torchvision.io.image import ImageReadMode | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from tencentpretrain.utils.misc import ZeroOneNormalize | |
from finetune.run_classifier import Classifier | |
def data_loader(args, path): | |
transform = transforms.Compose([ | |
transforms.Resize((args.image_height, args.image_width)), | |
ZeroOneNormalize() | |
]) | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
src_batch, seg_batch = [], [] | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
path = line[columns["path"]] | |
image = read_image(path, ImageReadMode.RGB) | |
image = image.to(args.device) | |
src = transform(image) | |
seg = [1] * ((src.size()[1] // args.patch_size) * (src.size()[2] // args.patch_size) + 1) | |
src_batch.append(src) | |
seg_batch.append(seg) | |
if len(src_batch) == args.batch_size: | |
yield torch.stack(src_batch, 0), \ | |
torch.LongTensor(seg_batch) | |
src_batch, seg_batch = [], [] | |
if len(src_batch) > 0: | |
yield torch.stack(src_batch, 0), \ | |
torch.LongTensor(seg_batch) | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--labels_num", type=int, required=True, | |
help="Number of prediction labels.") | |
tokenizer_opts(parser) | |
parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") | |
parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer["virtual"](args) | |
# Build classification model and load parameters. | |
args.soft_targets, args.soft_alpha = False, False | |
model = Classifier(args) | |
model = load_model(model, args.load_model_path) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
model.eval() | |
with open(args.prediction_path, mode="w", encoding="utf-8") as f: | |
f.write("label") | |
if args.output_logits: | |
f.write("\t" + "logits") | |
if args.output_prob: | |
f.write("\t" + "prob") | |
f.write("\n") | |
for i, (src_batch, seg_batch) in enumerate(data_loader(args, args.test_path)): | |
src_batch = src_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
with torch.no_grad(): | |
_, logits = model(src_batch, None, seg_batch) | |
pred = torch.argmax(logits, dim=1) | |
pred = pred.cpu().numpy().tolist() | |
prob = nn.Softmax(dim=1)(logits) | |
logits = logits.cpu().numpy().tolist() | |
prob = prob.cpu().numpy().tolist() | |
for j in range(len(pred)): | |
f.write(str(pred[j])) | |
if args.output_logits: | |
f.write("\t" + " ".join([str(v) for v in logits[j]])) | |
if args.output_prob: | |
f.write("\t" + " ".join([str(v) for v in prob[j]])) | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |