Spaces:
Runtime error
Runtime error
import argparse | |
import collections | |
import torch | |
def convert_vit_transformer_encoder_from_tencentpretrain_to_huggingface(input_model, output_model, layers_num): | |
for i in range(layers_num): | |
output_model["encoder.layer." + str(i) + ".attention.self.query.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.weight"] | |
output_model["encoder.layer." + str(i) + ".attention.self.query.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.bias"] | |
output_model["encoder.layer." + str(i) + ".attention.self.key.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.weight"] | |
output_model["encoder.layer." + str(i) + ".attention.self.key.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.bias"] | |
output_model["encoder.layer." + str(i) + ".attention.self.value.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.weight"] | |
output_model["encoder.layer." + str(i) + ".attention.self.value.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.bias"] | |
output_model["encoder.layer." + str(i) + ".attention.output.dense.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.weight"] | |
output_model["encoder.layer." + str(i) + ".attention.output.dense.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.bias"] | |
output_model["encoder.layer." + str(i) + ".layernorm_before.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".layer_norm_1.gamma"] | |
output_model["encoder.layer." + str(i) + ".layernorm_before.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".layer_norm_1.beta"] | |
output_model["encoder.layer." + str(i) + ".intermediate.dense.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.weight"] | |
output_model["encoder.layer." + str(i) + ".intermediate.dense.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.bias"] | |
output_model["encoder.layer." + str(i) + ".output.dense.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.weight"] | |
output_model["encoder.layer." + str(i) + ".output.dense.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.bias"] | |
output_model["encoder.layer." + str(i) + ".layernorm_after.weight"] = \ | |
input_model["encoder.transformer." + str(i) + ".layer_norm_2.gamma"] | |
output_model["encoder.layer." + str(i) + ".layernorm_after.bias"] = \ | |
input_model["encoder.transformer." + str(i) + ".layer_norm_2.beta"] | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", | |
help=".") | |
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", | |
help=".") | |
parser.add_argument("--layers_num", type=int, default=12, help=".") | |
args = parser.parse_args() | |
input_model = torch.load(args.input_model_path) | |
output_model = collections.OrderedDict() | |
output_model["embeddings.cls_token"] = input_model["embedding.patch.cls_emb"] | |
output_model["embeddings.patch_embeddings.projection.weight"] = input_model["embedding.patch.projection.weight"] | |
output_model["embeddings.patch_embeddings.projection.bias"] = input_model["embedding.patch.projection.bias"] | |
output_model["embeddings.position_embeddings"] = input_model["embedding.pos.embedding.weight"].unsqueeze(0) | |
convert_vit_transformer_encoder_from_tencentpretrain_to_huggingface(input_model, output_model, args.layers_num) | |
output_model["layernorm.weight"] = input_model["encoder.layer_norm.gamma"] | |
output_model["layernorm.bias"] = input_model["encoder.layer_norm.beta"] | |
torch.save(output_model, args.output_model_path) | |
if __name__ == "__main__": | |
main() | |