""" This script provides an example to wrap TencentPretrain for NER. """ import sys import os import random import argparse import json import torch import torch.nn as nn import torch.nn.functional as F tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.embeddings import * from tencentpretrain.encoders import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.optimizers import * from tencentpretrain.utils.constants import * from tencentpretrain.utils.vocab import Vocab from tencentpretrain.utils.seed import set_seed from tencentpretrain.utils.logging import init_logger from tencentpretrain.utils.tokenizers import * from tencentpretrain.model_saver import save_model from tencentpretrain.opts import finetune_opts from finetune.run_classifier import build_optimizer, load_or_initialize_parameters class NerTagger(nn.Module): def __init__(self, args): super(NerTagger, self).__init__() self.embedding = Embedding(args) for embedding_name in args.embedding: tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) self.embedding.update(tmp_emb, embedding_name) self.encoder = str2encoder[args.encoder](args) self.labels_num = args.labels_num self.output_layer = nn.Linear(args.hidden_size, self.labels_num) self.crf_target = args.crf_target if args.crf_target: from torchcrf import CRF self.crf = CRF(self.labels_num, batch_first=True) self.seq_length = args.seq_length def forward(self, src, tgt, seg): """ Args: src: [batch_size x seq_length] tgt: [batch_size x seq_length] seg: [batch_size x seq_length] Returns: loss: Sequence labeling loss. logits: Output logits. """ # Embedding. emb = self.embedding(src, seg) # Encoder. output = self.encoder(emb, seg) # Target. logits = self.output_layer(output) if self.crf_target: tgt_mask = seg.type(torch.uint8) pred = self.crf.decode(logits, mask=tgt_mask) for j in range(len(pred)): while len(pred[j]) < self.seq_length: pred[j].append(self.labels_num - 1) pred = torch.tensor(pred).contiguous().view(-1) if tgt is not None: loss = -self.crf(F.log_softmax(logits, 2), tgt, mask=tgt_mask, reduction='mean') return loss, pred else: return None, pred else: tgt_mask = seg.contiguous().view(-1).float() logits = logits.contiguous().view(-1, self.labels_num) pred = logits.argmax(dim=-1) if tgt is not None: tgt = tgt.contiguous().view(-1, 1) one_hot = torch.zeros(tgt.size(0), self.labels_num). \ to(torch.device(tgt.device)). \ scatter_(1, tgt, 1.0) numerator = -torch.sum(nn.LogSoftmax(dim=-1)(logits) * one_hot, 1) numerator = torch.sum(tgt_mask * numerator) denominator = torch.sum(tgt_mask) + 1e-6 loss = numerator / denominator return loss, pred else: return None, pred def read_dataset(args, path): dataset, columns = [], {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): columns[column_name] = i continue line = line.rstrip("\r\n").split("\t") labels = line[columns["label"]] tgt = [args.l2i[l] for l in labels.split(" ")] text_a = line[columns["text_a"]] src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) seg = [1] * len(src) if len(src) > args.seq_length: src = src[: args.seq_length] tgt = tgt[: args.seq_length] seg = seg[: args.seq_length] PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] while len(src) < args.seq_length: src.append(PAD_ID) tgt.append(args.labels_num - 1) seg.append(0) dataset.append([src, tgt, seg]) return dataset def batch_loader(batch_size, src, tgt, seg): instances_num = src.size()[0] for i in range(instances_num // batch_size): src_batch = src[i * batch_size : (i + 1) * batch_size, :] tgt_batch = tgt[i * batch_size : (i + 1) * batch_size, :] seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] yield src_batch, tgt_batch, seg_batch if instances_num > instances_num // batch_size * batch_size: src_batch = src[instances_num // batch_size * batch_size :, :] tgt_batch = tgt[instances_num // batch_size * batch_size :, :] seg_batch = seg[instances_num // batch_size * batch_size :, :] yield src_batch, tgt_batch, seg_batch def train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch): model.zero_grad() src_batch = src_batch.to(args.device) tgt_batch = tgt_batch.to(args.device) seg_batch = seg_batch.to(args.device) loss, _ = model(src_batch, tgt_batch, seg_batch) if torch.cuda.device_count() > 1: loss = torch.mean(loss) if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() scheduler.step() return loss def evaluate(args, dataset): src = torch.LongTensor([sample[0] for sample in dataset]) tgt = torch.LongTensor([sample[1] for sample in dataset]) seg = torch.LongTensor([sample[2] for sample in dataset]) instances_num = src.size(0) batch_size = args.batch_size correct, gold_entities_num, pred_entities_num = 0, 0, 0 args.model.eval() for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)): src_batch = src_batch.to(args.device) tgt_batch = tgt_batch.to(args.device) seg_batch = seg_batch.to(args.device) loss, pred = args.model(src_batch, tgt_batch, seg_batch) gold = tgt_batch.contiguous().view(-1, 1) for j in range(gold.size()[0]): if gold[j].item() in args.begin_ids: gold_entities_num += 1 for j in range(pred.size()[0]): if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]: pred_entities_num += 1 pred_entities_pos, gold_entities_pos = set(), set() for j in range(gold.size()[0]): if gold[j].item() in args.begin_ids: start = j for k in range(j + 1, gold.size()[0]): if gold[k].item() == args.l2i["[PAD]"] or gold[k].item() == args.l2i["O"] or gold[k].item() in args.begin_ids: end = k - 1 break else: end = gold.size()[0] - 1 gold_entities_pos.add((start, end)) for j in range(pred.size()[0]): if pred[j].item() in args.begin_ids and gold[j].item() != args.l2i["[PAD]"]: start = j for k in range(j + 1, pred.size()[0]): if pred[k].item() == args.l2i["[PAD]"] or pred[k].item() == args.l2i["O"] or pred[k].item() in args.begin_ids: end = k - 1 break else: end = pred.size()[0] - 1 pred_entities_pos.add((start, end)) for entity in pred_entities_pos: if entity not in gold_entities_pos: continue for j in range(entity[0], entity[1] + 1): if gold[j].item() != pred[j].item(): break else: correct += 1 args.logger.info("Report precision, recall, and f1:") eps = 1e-9 p = correct / (pred_entities_num + eps) r = correct / (gold_entities_num + eps) f1 = 2 * p * r / (p + r + eps) args.logger.info("{:.3f}, {:.3f}, {:.3f}".format(p, r, f1)) return f1 def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) finetune_opts(parser) parser.add_argument("--vocab_path", default=None, type=str, help="Path of the vocabulary file.") parser.add_argument("--spm_model_path", default=None, type=str, help="Path of the sentence piece model.") parser.add_argument("--label2id_path", type=str, required=True, help="Path of the label2id file.") parser.add_argument("--crf_target", action="store_true", help="Use CRF loss as the target function or not, default False.") args = parser.parse_args() # Load the hyperparameters of the config file. args = load_hyperparam(args) # Get logger. args.logger = init_logger(args) set_seed(args.seed) args.begin_ids = [] with open(args.label2id_path, mode="r", encoding="utf-8") as f: l2i = json.load(f) args.logger.info("Labels: " + str(l2i)) l2i["[PAD]"] = len(l2i) for label in l2i: if label.startswith("B"): args.begin_ids.append(l2i[label]) args.l2i = l2i args.labels_num = len(l2i) args.tokenizer = SpaceTokenizer(args) # Build sequence labeling model. model = NerTagger(args) # Load or initialize parameters. load_or_initialize_parameters(args, model) args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(args.device) # Training phase. instances = read_dataset(args, args.train_path) instances_num = len(instances) batch_size = args.batch_size args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 args.logger.info("Batch size: {}".format(batch_size)) args.logger.info("The number of training instances: {}".format(instances_num)) optimizer, scheduler = build_optimizer(args, model) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level = args.fp16_opt_level) if torch.cuda.device_count() > 1: args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) args.model = model total_loss, f1, best_f1 = 0.0, 0.0, 0.0 args.logger.info("Start training.") for epoch in range(1, args.epochs_num + 1): random.shuffle(instances) src = torch.LongTensor([ins[0] for ins in instances]) tgt = torch.LongTensor([ins[1] for ins in instances]) seg = torch.LongTensor([ins[2] for ins in instances]) model.train() for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, src, tgt, seg)): loss = train(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) total_loss += loss.item() if (i + 1) % args.report_steps == 0: args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) total_loss = 0.0 f1 = evaluate(args, read_dataset(args, args.dev_path)) if f1 > best_f1: best_f1 = f1 save_model(model, args.output_model_path) else: continue # Evaluation phase. if args.test_path is not None: args.logger.info("Test set evaluation.") if torch.cuda.device_count() > 1: args.model.module.load_state_dict(torch.load(args.output_model_path)) else: args.model.load_state_dict(torch.load(args.output_model_path)) evaluate(args, read_dataset(args, args.test_path)) if __name__ == "__main__": main()