""" This script provides an exmaple to wrap TencentPretrain for cloze test. One character in a line is masked. We should use the target that contains MLM. """ import sys import os import torch import argparse import random tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.embeddings import * from tencentpretrain.encoders import * from tencentpretrain.targets import * from tencentpretrain.utils.constants import * from tencentpretrain.utils import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts, tokenizer_opts def mask_token(tokens, seq_length, tokenizer): """ Mask a random token for prediction. """ start = 1 end = len(tokens) if len(tokens) < seq_length else seq_length mask_pos = random.randint(start, end-1) token = tokens[mask_pos] tokens[mask_pos] = tokenizer.convert_tokens_to_ids([MASK_TOKEN])[0] return (tokens, mask_pos, token) def batch_loader(batch_size, src, seg, mask_pos, label): instances_num = src.size(0) for i in range(instances_num // batch_size): src_batch = src[i * batch_size : (i + 1) * batch_size, :] seg_batch = seg[i * batch_size : (i + 1) * batch_size, :] mask_pos_batch = mask_pos[i * batch_size : (i + 1) * batch_size] label_batch = label[i * batch_size : (i + 1) * batch_size] yield src_batch, seg_batch, mask_pos_batch, label_batch if instances_num > instances_num // batch_size * batch_size: src_batch = src[instances_num // batch_size * batch_size :, :] seg_batch = seg[instances_num // batch_size * batch_size :, :] mask_pos_batch = mask_pos[instances_num // batch_size * batch_size :] label_batch = label[instances_num // batch_size * batch_size :] yield src_batch, seg_batch, mask_pos_batch, label_batch def read_dataset(args, path): dataset = [] PAD_ID = args.tokenizer.vocab.get(PAD_TOKEN) with open(path, mode="r", encoding="utf-8") as f: for line in f: src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(line.strip())) if len(src) == 0: continue src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + src + args.tokenizer.convert_tokens_to_ids([SEP_TOKEN]) src, mask_pos, label = mask_token(src, args.seq_length, args.tokenizer) seg = [1] * len(src) if len(src) > args.seq_length: src = src[:args.seq_length] seg = seg[:args.seq_length] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(PAD_ID) dataset.append((src, seg, mask_pos, label)) return dataset class ClozeTest(torch.nn.Module): def __init__(self, args): super(ClozeTest, self).__init__() self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab)) self.encoder = str2encoder[args.encoder](args) self.target = MlmTarget(args, len(args.tokenizer.vocab)) self.act = str2act[args.hidden_act] def forward(self, src, seg): emb = self.embedding(src, seg) output = self.encoder(emb, seg) output = self.act(self.target.mlm_linear_1(output)) output = self.target.layer_norm(output) output = self.target.mlm_linear_2(output) prob = torch.nn.Softmax(dim=-1)(output) return prob if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) tokenizer_opts(parser) parser.add_argument("--topn", type=int, default=10, help="Print top n nearest neighbours.") args = parser.parse_args() args.target = "mlm" # Load the hyperparameters from the config file. args = load_hyperparam(args) args.tokenizer = str2tokenizer[args.tokenizer](args) # Build cloze test model. model = ClozeTest(args) model = load_model(model, args.load_model_path) # For simplicity, we use DataParallel wrapper to use multiple GPUs. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) model.eval() dataset = read_dataset(args, args.test_path) src = torch.LongTensor([sample[0] for sample in dataset]) seg = torch.LongTensor([sample[1] for sample in dataset]) mask_pos = [sample[2] for sample in dataset] label = [sample[3] for sample in dataset] f_pred = open(args.prediction_path, mode="w", encoding="utf-8") for i, (src_batch, seg_batch, mask_pos_batch, label_batch) in \ enumerate(batch_loader(args.batch_size, src, seg, mask_pos, label)): src_batch = src_batch.to(device) seg_batch = seg_batch.to(device) prob = model(src_batch, seg_batch) for j, p in enumerate(mask_pos_batch): topn_ids = (-prob[j][p]).argsort()[:args.topn] sentence = "".join([args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in src_batch[j] if token_id != 0]) pred_tokens = " ".join(args.tokenizer.convert_ids_to_tokens([token_id.item()])[0] for token_id in topn_ids) label_token = args.tokenizer.convert_ids_to_tokens([label_batch[j]])[0] f_pred.write(sentence + '\n') f_pred.write("Predicted answer: " + pred_tokens + '\n') f_pred.write("Correct answer: " + label_token + '\n') f_pred.write("\n") f_pred.close()