import argparse import collections import torch parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", help=".") parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", help=".") parser.add_argument("--layers_num", type=int, default=12) args = parser.parse_args() input_model = torch.load(args.input_model_path) output_model = collections.OrderedDict() output_model["transformer.wte.weight"] = input_model["embedding.word.embedding.weight"] output_model["transformer.wpe.weight"] = input_model["embedding.pos.embedding.weight"] max_position = input_model["embedding.pos.embedding.weight"].shape[0] for i in range(args.layers_num): output_model["transformer.h." + str(i) + ".attn.bias"] = \ torch.tril(torch.ones(max_position, max_position)).view(1, 1, max_position, max_position) weight = [] bias = [] for j in range(3): weight.append(input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers." + str(j) + ".weight"]) bias.append(input_model["encoder.transformer." + str(i) + ".self_attn.linear_layers." + str(j) + ".bias"]) output_model["transformer.h." + str(i) + ".attn.c_attn.weight"] = \ torch.cat(weight, 0).t() output_model["transformer.h." + str(i) + ".attn.c_attn.bias"] = \ torch.cat(bias, 0) output_model["transformer.h." + str(i) + ".attn.c_proj.weight"] = \ input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.weight"].t() output_model["transformer.h." + str(i) + ".attn.c_proj.bias"] = \ input_model["encoder.transformer." + str(i) + ".self_attn.final_linear.bias"] output_model["transformer.h." + str(i) + ".ln_1.weight"] = \ input_model["encoder.transformer." + str(i) + ".layer_norm_1.gamma"] output_model["transformer.h." + str(i) + ".ln_1.bias"] = \ input_model["encoder.transformer." + str(i) + ".layer_norm_1.beta"] output_model["transformer.h." + str(i) + ".mlp.c_fc.weight"] = \ input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.weight"].t() output_model["transformer.h." + str(i) + ".mlp.c_fc.bias"] = \ input_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.bias"] output_model["transformer.h." + str(i) + ".mlp.c_proj.weight"] = \ input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.weight"].t() output_model["transformer.h." + str(i) + ".mlp.c_proj.bias"] = \ input_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.bias"] output_model["transformer.h." + str(i) + ".ln_2.weight"] = \ input_model["encoder.transformer." + str(i) + ".layer_norm_2.gamma"] output_model["transformer.h." + str(i) + ".ln_2.bias"] = \ input_model["encoder.transformer." + str(i) + ".layer_norm_2.beta"] output_model["transformer.ln_f.weight"] = input_model["encoder.layer_norm.gamma"] output_model["transformer.ln_f.bias"] = input_model["encoder.layer_norm.beta"] output_model["lm_head.weight"] = input_model["target.lm.output_layer.weight"] torch.save(output_model, args.output_model_path)