import sys import os import argparse import collections import torch tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.utils.config import load_hyperparam def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", help=".") parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", help=".") parser.add_argument("--config_path", type=str, help=".") args = parser.parse_args() args = load_hyperparam(args) input_model = torch.load(args.input_model_path) if "word" in args.embedding: input_model["embedding.word.embedding.weight"] = input_model["embedding.word_embedding.weight"] input_model.pop("embedding.word_embedding.weight") if "pos" in args.embedding: input_model["embedding.pos.embedding.weight"] = input_model["embedding.position_embedding.weight"] input_model.pop("embedding.position_embedding.weight") if "seg" in args.embedding: input_model["embedding.seg.embedding.weight"] = input_model["embedding.segment_embedding.weight"] input_model.pop("embedding.segment_embedding.weight") if "sinusoidalpos" in args.embedding: input_model["embedding.sinusoidalpos.pe"] = input_model["embedding.pe"] input_model.pop("embedding.pe") if hasattr(args, "decoder") and args.decoder is not None: for n in list(input_model.keys()): # target.decoder -> decoder if n.split('.')[1] == "decoder": input_model[".".join(n.split('.')[1:])] = input_model[n] input_model.pop(n) if n.split('.')[1] == "embedding": input_model[".".join(["tgt_embedding"] + n.split('.')[2:])] = input_model[n] input_model.pop(n) if "word" in args.embedding: input_model["tgt_embedding.word.embedding.weight"] = input_model["tgt_embedding.word_embedding.weight"] input_model.pop("tgt_embedding.word_embedding.weight") if "pos" in args.embedding: input_model["tgt_embedding.pos.embedding.weight"] = input_model["tgt_embedding.position_embedding.weight"] input_model.pop("tgt_embedding.position_embedding.weight") if "seg" in args.embedding: input_model["tgt_embedding.seg.embedding.weight"] = input_model["tgt_embedding.segment_embedding.weight"] input_model.pop("tgt_embedding.segment_embedding.weight") if "sinusoidalpos" in args.embedding: input_model["tgt_embedding.sinusoidalpos.pe"] = input_model["tgt_embedding.pe"] input_model.pop("tgt_embedding.pe") if "mlm" in args.target: try: input_model["target.mlm.linear_1.weight"] = input_model["target.mlm_linear_1.weight"] input_model.pop("target.mlm_linear_1.weight") input_model["target.mlm.linear_1.bias"] = input_model["target.mlm_linear_1.bias"] input_model.pop("target.mlm_linear_1.bias") input_model["target.mlm.layer_norm.gamma"] = input_model["target.layer_norm.gamma"] input_model.pop("target.layer_norm.gamma") input_model["target.mlm.layer_norm.beta"] = input_model["target.layer_norm.beta"] input_model.pop("target.layer_norm.beta") input_model["target.mlm.linear_2.weight"] = input_model["target.mlm_linear_2.weight"] input_model.pop("target.mlm_linear_2.weight") input_model["target.mlm.linear_2.bias"] = input_model["target.mlm_linear_2.bias"] input_model.pop("target.mlm_linear_2.bias") except: pass if "sp" in args.target: try: input_model["target.sp.linear_1.weight"] = input_model["target.sp_linear_1.weight"] input_model.pop("target.sp_linear_1.weight") input_model["target.sp.linear_1.bias"] = input_model["target.sp_linear_1.bias"] input_model.pop("target.sp_linear_1.bias") input_model["target.sp.linear_2.weight"] = input_model["target.sp_linear_2.weight"] input_model.pop("target.sp_linear_2.weight") input_model["target.sp.linear_2.bias"] = input_model["target.sp_linear_2.bias"] input_model.pop("target.sp_linear_2.bias") except: pass try: input_model["target.sp.linear_1.weight"] = input_model["target.nsp_linear_1.weight"] input_model.pop("target.nsp_linear_1.weight") input_model["target.sp.linear_1.bias"] = input_model["target.nsp_linear_1.bias"] input_model.pop("target.nsp_linear_1.bias") input_model["target.sp.linear_2.weight"] = input_model["target.nsp_linear_2.weight"] input_model.pop("target.nsp_linear_2.weight") input_model["target.sp.linear_2.bias"] = input_model["target.nsp_linear_2.bias"] input_model.pop("target.nsp_linear_2.bias") except: pass try: input_model["target.sp.linear_1.weight"] = input_model["target.sop_linear_1.weight"] input_model.pop("target.sop_linear_1.weight") input_model["target.sp.linear_1.bias"] = input_model["target.sop_linear_1.bias"] input_model.pop("target.sop_linear_1.bias") input_model["target.sp.linear_2.weight"] = input_model["target.sop_linear_2.weight"] input_model.pop("target.sop_linear_2.weight") input_model["target.sp.linear_2.bias"] = input_model["target.sop_linear_2.bias"] input_model.pop("target.sop_linear_2.bias") except: pass if "lm" in args.target: try: input_model["target.lm.output_layer.weight"] = input_model["target.output_layer.weight"] input_model.pop("target.output_layer.weight") if args.has_lmtarget_bias: input_model["target.lm.output_layer.bias"] = input_model["target.output_layer.bias"] input_model.pop("target.output_layer.bias") except: pass torch.save(input_model, args.output_model_path) if __name__ == "__main__": main()