""" This script provides an example to wrap TencentPretrain for multi-label classification inference. """ import sys import os import torch import argparse import collections import torch.nn as nn tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.utils.constants import * from tencentpretrain.utils import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.seed import set_seed from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts, tokenizer_opts from finetune.run_classifier_multi_label import MultilabelClassifier from inference.run_classifier_infer import read_dataset from inference.run_classifier_infer import batch_loader def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) parser.add_argument("--labels_num", type=int, required=True, help="Number of prediction labels.") tokenizer_opts(parser) parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") args = parser.parse_args() # Load the hyperparameters from the config file. args = load_hyperparam(args) # Build tokenizer. args.tokenizer = str2tokenizer[args.tokenizer](args) # Build classification model and load parameters. args.soft_targets, args.soft_alpha = False, False model = MultilabelClassifier(args) model = load_model(model, args.load_model_path) # For simplicity, we use DataParallel wrapper to use multiple GPUs. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) dataset = read_dataset(args, args.test_path) src = torch.LongTensor([sample[0] for sample in dataset]) seg = torch.LongTensor([sample[1] for sample in dataset]) batch_size = args.batch_size instances_num = src.size()[0] print("The number of prediction instances: ", instances_num) model.eval() with open(args.prediction_path, mode="w", encoding="utf-8") as f: f.write("label") if args.output_logits: f.write("\t" + "logits") if args.output_prob: f.write("\t" + "prob") f.write("\n") for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): src_batch = src_batch.to(device) seg_batch = seg_batch.to(device) with torch.no_grad(): _, logits = model(src_batch, None, seg_batch) prob = nn.Sigmoid()(logits) prob = prob.cpu().numpy().tolist() logits = logits.cpu().numpy().tolist() for i, p in enumerate(prob): label = list() for j in range(len(p)): if p[j] > 0.5: label.append(str(j)) f.write(",".join(label)) if args.output_logits: f.write("\t" + " ".join([str(v) for v in logits[i]])) if args.output_prob: f.write("\t" + " ".join([str(v) for v in p])) f.write("\n") if __name__ == "__main__": main()