import argparse import collections import torch def convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): for i in range(layers_num): output_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.weight'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.weight'] output_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.bias'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.bias'] output_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.weight'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.weight'] output_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.bias'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.bias'] output_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.weight'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.weight'] output_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.bias'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.bias'] output_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.weight'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.weight'] output_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.bias'] = \ input_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.bias'] output_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.weight'] = \ input_model['encoder.transformer.' + str(i) + '.layer_norm_1.gamma'] output_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.bias'] = \ input_model['encoder.transformer.' + str(i) + '.layer_norm_1.beta'] output_model['model.encoder.layers.' + str(i) + '.fc1.weight'] = \ input_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.weight'] output_model['model.encoder.layers.' + str(i) + '.fc1.bias'] = \ input_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.bias'] output_model['model.encoder.layers.' + str(i) + '.fc2.weight'] = \ input_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.weight'] output_model['model.encoder.layers.' + str(i) + '.fc2.bias'] = \ input_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.bias'] output_model['model.encoder.layers.' + str(i) + '.final_layer_norm.weight'] = \ input_model['encoder.transformer.' + str(i) + '.layer_norm_2.gamma'] output_model['model.encoder.layers.' + str(i) + '.final_layer_norm.bias'] = \ input_model['encoder.transformer.' + str(i) + '.layer_norm_2.beta'] def convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): for i in range(layers_num): output_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.weight'] output_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.bias'] output_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.weight'] output_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.bias'] output_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.weight'] output_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.bias'] output_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.weight'] output_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.bias'] output_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.gamma'] output_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.beta'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.weight'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.bias'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.weight'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.bias'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.weight'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.bias'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.weight'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.bias'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.gamma'] output_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.beta'] output_model['model.decoder.layers.' + str(i) + '.fc1.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.weight'] output_model['model.decoder.layers.' + str(i) + '.fc1.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.bias'] output_model['model.decoder.layers.' + str(i) + '.fc2.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.weight'] output_model['model.decoder.layers.' + str(i) + '.fc2.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.bias'] output_model['model.decoder.layers.' + str(i) + '.final_layer_norm.weight'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.gamma'] output_model['model.decoder.layers.' + str(i) + '.final_layer_norm.bias'] = \ input_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.beta'] def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_model_path", type=str, default="models/input_model.pt", help=".") parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", help=".") parser.add_argument("--layers_num", type=int, default=12, help=".") parser.add_argument("--decoder_layers_num", type=int, default=6, help=".") args = parser.parse_args() input_model = torch.load(args.input_model_path) output_model = collections.OrderedDict() for i in range(2): output_model["model.encoder.conv.conv_layers." + str(i) + ".weight"] = \ input_model["embedding.speech.conv.conv_layers." + str(i) + ".0.weight"] output_model["model.encoder.conv.conv_layers." + str(i) + ".bias"] = \ input_model["embedding.speech.conv.conv_layers." + str(i) + ".0.bias"] output_model['model.decoder.embed_tokens.weight'] = input_model['tgt_embedding.word.embedding.weight'] convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.layers_num) convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.decoder_layers_num) output_model['model.encoder.layer_norm.weight'] = input_model['encoder.layer_norm.gamma'] output_model['model.encoder.layer_norm.bias'] = input_model['encoder.layer_norm.beta'] output_model['model.decoder.layer_norm.weight'] = input_model['decoder.layer_norm.gamma'] output_model['model.decoder.layer_norm.bias'] = input_model['decoder.layer_norm.beta'] output_model["lm_head.weight"] = input_model['target.lm.output_layer.weight'] torch.save(output_model, args.output_model_path) if __name__ == "__main__": main()