import argparse import collections import torch def convert_vit_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): for i in range(layers_num): output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.weight"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.query.weight"] output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.0.bias"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.query.bias"] output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.weight"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.key.weight"] output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.1.bias"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.key.bias"] output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.weight"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.value.weight"] output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers.2.bias"] = \ input_model["encoder.layer." + str(i) + ".attention.attention.value.bias"] output_model["encoder.transformer." + str(i) + ".self_attn.final_linear.weight"] = \ input_model["encoder.layer." + str(i) + ".attention.output.dense.weight"] output_model["encoder.transformer." + str(i) + ".self_attn.final_linear.bias"] = \ input_model["encoder.layer." + str(i) + ".attention.output.dense.bias"] output_model["encoder.transformer." + str(i) + ".layer_norm_1.gamma"] = \ input_model["encoder.layer." + str(i) + ".layernorm_before.weight"] output_model["encoder.transformer." + str(i) + ".layer_norm_1.beta"] = \ input_model["encoder.layer." + str(i) + ".layernorm_before.bias"] output_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.weight"] = \ input_model["encoder.layer." + str(i) + ".intermediate.dense.weight"] output_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.bias"] = \ input_model["encoder.layer." + str(i) + ".intermediate.dense.bias"] output_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.weight"] = \ input_model["encoder.layer." + str(i) + ".output.dense.weight"] output_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.bias"] = \ input_model["encoder.layer." + str(i) + ".output.dense.bias"] output_model["encoder.transformer." + str(i) + ".layer_norm_2.gamma"] = \ input_model["encoder.layer." + str(i) + ".layernorm_after.weight"] output_model["encoder.transformer." + str(i) + ".layer_norm_2.beta"] = \ input_model["encoder.layer." + str(i) + ".layernorm_after.bias"] def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", help=".") parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", help=".") parser.add_argument("--layers_num", type=int, default=12, help=".") args = parser.parse_args() input_model = torch.load(args.input_model_path, map_location="cpu") output_model = collections.OrderedDict() output_model["embedding.patch.cls_emb"] = input_model["embeddings.cls_token"] output_model["embedding.patch.projection.weight"] = input_model["embeddings.patch_embeddings.projection.weight"] output_model["embedding.patch.projection.bias"] = input_model["embeddings.patch_embeddings.projection.bias"] output_model["embedding.pos.embedding.weight"] = input_model["embeddings.position_embeddings"].squeeze(0) convert_vit_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.layers_num) output_model["encoder.layer_norm.gamma"] = input_model["layernorm.weight"] output_model["encoder.layer_norm.beta"] = input_model["layernorm.bias"] torch.save(output_model, args.output_model_path) if __name__ == "__main__": main()