"""
This script provides an example to wrap TencentPretrain for SimCSE.
"""
import sys
import os
import random
import argparse
import math
import scipy.stats
import torch
import torch.nn as nn
import numpy as np

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.embeddings import *
from tencentpretrain.encoders import *
from tencentpretrain.targets import *
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.optimizers import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.seed import set_seed
from tencentpretrain.utils.logging import init_logger
from tencentpretrain.model_saver import save_model
from tencentpretrain.opts import finetune_opts, tokenizer_opts
from finetune.run_classifier import count_labels_num, build_optimizer, load_or_initialize_parameters
from finetune.run_classifier_siamese import batch_loader


class SimCSE(nn.Module):
    def __init__(self, args):
        super(SimCSE, self).__init__()
        self.embedding = Embedding(args)
        for embedding_name in args.embedding:
            tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab))
            self.embedding.update(tmp_emb, embedding_name)
        self.encoder = str2encoder[args.encoder](args)

        self.pooling_type = args.pooling

    def forward(self, src, seg):
        """
        Args:
            src: [batch_size x seq_length]
            tgt: [batch_size]
            seg: [batch_size x seq_length]
        """
        # Embedding.
        emb_0 = self.embedding(src[0], seg[0])
        emb_1 = self.embedding(src[1], seg[1])
        # Encoder.
        output_0 = self.encoder(emb_0, seg[0])
        output_1 = self.encoder(emb_1, seg[1])
        # Target.
        features_0 = self.pooling(output_0, seg[0], self.pooling_type)
        features_1 = self.pooling(output_1, seg[1], self.pooling_type)

        return features_0, features_1

    def pooling(self, memory_bank, seg, pooling_type):
        seg = torch.unsqueeze(seg, dim=-1).type(torch.float)
        memory_bank = memory_bank * seg
        if pooling_type == "mean":
            features = torch.sum(memory_bank, dim=1)
            features = torch.div(features, torch.sum(seg, dim=1))
        elif pooling_type == "last":
            features = memory_bank[torch.arange(memory_bank.shape[0]), torch.squeeze(torch.sum(seg, dim=1).type(torch.int64) - 1), :]
        elif pooling_type == "max":
            features = torch.max(memory_bank + (seg - 1) * sys.maxsize, dim=1)[0]
        else:
            features = memory_bank[:, 0, :]
        return features


def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")

            if "text_b" in columns:
                text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
            else:
                text_a = line[columns["text_a"]]
                text_b = text_a
            src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN])
            src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN])
            seg_a = [1] * len(src_a)
            seg_b = [1] * len(src_b)
            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]

            if len(src_a) >= args.seq_length:
                src_a = src_a[:args.seq_length]
                seg_a = seg_a[:args.seq_length]
            while len(src_a) < args.seq_length:
                src_a.append(PAD_ID)
                seg_a.append(0)

            if len(src_b) >= args.seq_length:
                src_b = src_b[:args.seq_length]
                seg_b = seg_b[:args.seq_length]
            while len(src_b) < args.seq_length:
                src_b.append(PAD_ID)
                seg_b.append(0)

            if "label" in columns:
                tgt = float(line[columns["label"]])
                dataset.append(((src_a, src_b), tgt, (seg_a, seg_b)))
            else:
                dataset.append(((src_a, src_a), -1, (seg_a, seg_a)))
    return dataset


def evaluate(args, dataset):
    src_a = torch.LongTensor([example[0][0] for example in dataset])
    src_b = torch.LongTensor([example[0][1] for example in dataset])
    tgt = torch.FloatTensor([example[1] for example in dataset])
    seg_a = torch.LongTensor([example[2][0] for example in dataset])
    seg_b = torch.LongTensor([example[2][1] for example in dataset])

    all_similarities = []
    batch_size = args.batch_size
    args.model.eval()

    for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))):

        src_a_batch, src_b_batch = src_batch
        seg_a_batch, seg_b_batch = seg_batch

        src_a_batch = src_a_batch.to(args.device)
        src_b_batch = src_b_batch.to(args.device)

        seg_a_batch = seg_a_batch.to(args.device)
        seg_b_batch = seg_b_batch.to(args.device)

        with torch.no_grad():
            features_0, features_1 = args.model((src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch))
        similarity_matrix = similarity(features_0, features_1, 1)

        for j in range(similarity_matrix.size(0)):
            all_similarities.append(similarity_matrix[j][j].item())

    corrcoef = scipy.stats.spearmanr(tgt, all_similarities).correlation
    args.logger.info("Spearman's correlation: {:.4f}".format(corrcoef))
    return corrcoef


def similarity(x, y, temperature):
    x = x / x.norm(dim=-1, keepdim=True)
    y = y / y.norm(dim=-1, keepdim=True)
    return torch.matmul(x, y.transpose(-2, -1)) / temperature


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    tokenizer_opts(parser)

    parser.add_argument("--temperature", type=float, default=0.05)
    parser.add_argument("--eval_steps", type=int, default=200, help="Evaluate frequency.")

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model.
    model = SimCSE(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info("The number of training instances: {}".format(instances_num))

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")
    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src_a = torch.LongTensor([example[0][0] for example in trainset])
        src_b = torch.LongTensor([example[0][1] for example in trainset])
        tgt = torch.FloatTensor([example[1] for example in trainset])
        seg_a = torch.LongTensor([example[2][0] for example in trainset])
        seg_b = torch.LongTensor([example[2][1] for example in trainset])

        model.train()
        for i, (src_batch, tgt_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), tgt, (seg_a, seg_b))):
            model.zero_grad()

            src_a_batch, src_b_batch = src_batch
            seg_a_batch, seg_b_batch = seg_batch

            src_a_batch = src_a_batch.to(args.device)
            src_b_batch = src_b_batch.to(args.device)

            seg_a_batch = seg_a_batch.to(args.device)
            seg_b_batch = seg_b_batch.to(args.device)

            features_0, features_1 = model((src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch))

            similarity_matrix = similarity(features_0, features_1, args.temperature)
            tgt_batch = torch.arange(similarity_matrix.size(0), device=similarity_matrix.device, dtype=torch.long)
            loss = nn.CrossEntropyLoss()(similarity_matrix, tgt_batch)

            if args.fp16:
                with args.amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            optimizer.step()
            scheduler.step()

            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}"
                                 .format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

            if (i + 1) % args.eval_steps == 0 or (i + 1) == math.ceil(instances_num / batch_size):
                result = evaluate(args, read_dataset(args, args.dev_path))
                args.logger.info("Epoch id: {}, Training steps: {}, Evaluate result: {}, Best result: {}"
                                 .format(epoch, i + 1, result, best_result))
                if result > best_result:
                    best_result = result
                    save_model(model, args.output_model_path)
                    args.logger.info("It is the best model until now. Save it to {}".format(args.output_model_path))


if __name__ == "__main__":
    main()