## Training 1. Clone the TencentPretrain project and install dependencies: PyTorch, DeepSpeed, SentencePiece ``` git clone https://github.com/Tencent/TencentPretrain.git ``` 2. Convert LLaMA-7B weights to TencentPretrain format ``` cd TencentPretrain python3 scripts/convert_llama_to_tencentpretrain.py --input_model_path $LLaMA_7B_FOLDER/consolidated.00.pth --output_model_path models/llama-7b.bin --layers_num 32 ``` 3. Modify configuration file Check out the `tencentpretrain/utils/constants.py` file, and modify L4: `special_tokens_map.json` to `llama_special_tokens_map.json` 4. Data preprocess. We use the example corpus in the project for pre-training, one can also use custom data training in the same format (one sample per line). ``` python3 preprocess.py --corpus_path corpora/book_review.txt --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \ --dataset_path dataset.pt --processes_num 8 --data_processor lm ``` 5. Start training. ``` deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \ --pretrained_model_path models/llama-7b.bin \ --dataset_path dataset.pt --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \ --config_path models/llama/7b_config.json \ --output_model_path models/output_model.bin \ --world_size 8 --learning_rate 1e-4 \ --data_processor lm --total_steps 10000 --save_checkpoint_steps 2000 --batch_size 24 ``` ## Inference Similar to facebookresearch/llama, TencentPretrain also provides language model inference code. For example, using a single GPU for LLaMA-7B inference, the prompt is in the file `beginning.txt`: ``` python3 scripts/generate_lm.py --load_model_path models/llama-7b.bin --spm_model_path $LLaMA_7B_FOLDER/tokenizer.model \ --test_path beginning.txt --prediction_path generated_sentence.txt \ --config_path models/llama/7b_config.json ``` For now, TencentPretrain only support LLaMA-7B training. We are working on our framework to support LLaMA model training/fine-tuning at all scales and sharing more experimental results.