""" This script provides an example to wrap TencentPretrain for C3 (a multiple choice dataset). """ import sys import os import argparse import json import random import torch import torch.nn as nn tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.embeddings import * from tencentpretrain.encoders import * from tencentpretrain.utils.constants import * from tencentpretrain.utils import * from tencentpretrain.utils.optimizers import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.seed import set_seed from tencentpretrain.utils.logging import init_logger from tencentpretrain.model_saver import save_model from tencentpretrain.opts import finetune_opts, tokenizer_opts, adv_opts from finetune.run_classifier import build_optimizer, load_or_initialize_parameters, train_model, batch_loader, evaluate class MultipleChoice(nn.Module): def __init__(self, args): super(MultipleChoice, self).__init__() self.embedding = Embedding(args) for embedding_name in args.embedding: tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) self.embedding.update(tmp_emb, embedding_name) self.encoder = str2encoder[args.encoder](args) self.dropout = nn.Dropout(args.dropout) self.output_layer = nn.Linear(args.hidden_size, 1) def forward(self, src, tgt, seg, soft_tgt=None): """ Args: src: [batch_size x choices_num x seq_length] tgt: [batch_size] seg: [batch_size x choices_num x seq_length] """ choices_num = src.shape[1] src = src.view(-1, src.size(-1)) seg = seg.view(-1, seg.size(-1)) # Embedding. emb = self.embedding(src, seg) # Encoder. output = self.encoder(emb, seg) output = self.dropout(output) logits = self.output_layer(output[:, 0, :]) reshaped_logits = logits.view(-1, choices_num) if tgt is not None: loss = nn.NLLLoss()(nn.LogSoftmax(dim=-1)(reshaped_logits), tgt.view(-1)) return loss, reshaped_logits else: return None, reshaped_logits def read_dataset(args, path): with open(path, mode="r", encoding="utf-8") as f: data = json.load(f) examples = [] for i in range(len(data)): for j in range(len(data[i][1])): example = ["\n".join(data[i][0]).lower(), data[i][1][j]["question"].lower()] for k in range(len(data[i][1][j]["choice"])): example += [data[i][1][j]["choice"][k].lower()] for k in range(len(data[i][1][j]["choice"]), args.max_choices_num): example += ["No Answer"] example += [data[i][1][j].get("answer", "").lower()] examples += [example] dataset = [] for i, example in enumerate(examples): tgt = 0 for k in range(args.max_choices_num): if example[2 + k] == example[6]: tgt = k dataset.append(([], tgt, [])) for k in range(args.max_choices_num): src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(example[k + 2]) + [SEP_TOKEN]) src_b = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[1]) + [SEP_TOKEN]) src_c = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(example[0]) + [SEP_TOKEN]) src = src_a + src_b + src_c seg = [1] * (len(src_a) + len(src_b)) + [2] * len(src_c) if len(src) > args.seq_length: src = src[: args.seq_length] seg = seg[: args.seq_length] PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(0) dataset[-1][0].append(src) dataset[-1][2].append(seg) return dataset def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) finetune_opts(parser) parser.add_argument("--max_choices_num", default=4, type=int, help="The maximum number of cadicate answer, shorter than this will be padded.") tokenizer_opts(parser) adv_opts(parser) args = parser.parse_args() args.labels_num = args.max_choices_num # Load the hyperparameters from the config file. args = load_hyperparam(args) set_seed(args.seed) # Build tokenizer. args.tokenizer = str2tokenizer[args.tokenizer](args) # Build multiple choice model. model = MultipleChoice(args) # Load or initialize parameters. load_or_initialize_parameters(args, model) # Get logger. args.logger = init_logger(args) args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(args.device) # Training phase. trainset = read_dataset(args, args.train_path) instances_num = len(trainset) batch_size = args.batch_size args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1 args.logger.info("Batch size: {}".format(batch_size)) args.logger.info("The number of training instances: {}".format(instances_num)) optimizer, scheduler = build_optimizer(args, model) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) args.amp = amp if torch.cuda.device_count() > 1: args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) args.model = model if args.use_adv: args.adv_method = str2adv[args.adv_type](model) total_loss, result, best_result = 0.0, 0.0, 0.0 args.logger.info("Start training.") for epoch in range(1, args.epochs_num + 1): random.shuffle(trainset) src = torch.LongTensor([example[0] for example in trainset]) tgt = torch.LongTensor([example[1] for example in trainset]) seg = torch.LongTensor([example[2] for example in trainset]) model.train() for i, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_batch, seg_batch) total_loss += loss.item() if (i + 1) % args.report_steps == 0: args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps)) total_loss = 0.0 result = evaluate(args, read_dataset(args, args.dev_path)) if result[0] > best_result: best_result = result[0] save_model(model, args.output_model_path) # Evaluation phase. if args.test_path is not None: args.logger.info("Test set evaluation.") if torch.cuda.device_count() > 1: args.model.module.load_state_dict(torch.load(args.output_model_path)) else: args.model.load_state_dict(torch.load(args.output_model_path)) evaluate(args, read_dataset(args, args.test_path)) if __name__ == "__main__": main()