import argparse import torch import tencentpretrain.trainer as trainer from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.opts import * def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # Path options. parser.add_argument("--dataset_path", type=str, default="dataset.pt", help="Path of the preprocessed dataset.") parser.add_argument("--pretrained_model_path", type=str, default=None, help="Path of the pretrained model.") parser.add_argument("--output_model_path", type=str, required=True, help="Path of the output model.") parser.add_argument("--config_path", type=str, default="models/bert/base_config.json", help="Config file of model hyper-parameters.") # Training and saving options. parser.add_argument("--total_steps", type=int, default=100000, help="Total training steps.") parser.add_argument("--save_checkpoint_steps", type=int, default=10000, help="Specific steps to save model checkpoint.") parser.add_argument("--report_steps", type=int, default=100, help="Specific steps to print prompt.") parser.add_argument("--accumulation_steps", type=int, default=1, help="Specific steps to accumulate gradient.") parser.add_argument("--batch_size", type=int, default=32, help="Training batch size. The actual batch_size is [batch_size x world_size x accumulation_steps].") parser.add_argument("--instances_buffer_size", type=int, default=25600, help="The buffer size of instances in memory.") parser.add_argument("--labels_num", type=int, required=False, help="Number of prediction labels.") parser.add_argument("--dropout", type=float, default=0.1, help="Dropout value.") parser.add_argument("--seed", type=int, default=7, help="Random seed.") # Preprocess options. tokenizer_opts(parser) tgt_tokenizer_opts(parser) # Model options. model_opts(parser) parser.add_argument("--data_processor", choices=["bert", "lm", "mlm", "bilm", "albert", "mt", "t5", "cls", "prefixlm", "gsg", "bart", "cls_mlm", "vit", "vilt", "clip", "s2t", "beit", "dalle"], default="bert", help="The data processor of the pretraining model.") parser.add_argument("--deep_init", action="store_true", help="Scaling initialization of projection layers by a " "factor of 1/sqrt(2N). Necessary to large models.") # Masking options. parser.add_argument("--whole_word_masking", action="store_true", help="Whole word masking.") parser.add_argument("--span_masking", action="store_true", help="Span masking.") parser.add_argument("--span_geo_prob", type=float, default=0.2, help="Hyperparameter of geometric distribution for span masking.") parser.add_argument("--span_max_length", type=int, default=10, help="Max length for span masking.") # Optimizer options. optimization_opts(parser) # GPU options. parser.add_argument("--world_size", type=int, default=1, help="Total number of processes (GPUs) for training.") parser.add_argument("--gpu_ranks", default=[], nargs='+', type=int, help="List of ranks of each process." " Each process has a unique integer rank whose value is in the interval [0, world_size), and runs in a single GPU.") parser.add_argument("--master_ip", default="tcp://localhost:12345", type=str, help="IP-Port of master for training.") parser.add_argument("--backend", choices=["nccl", "gloo"], default="nccl", type=str, help="Distributed backend.") # Deepspeed options. deepspeed_opts(parser) # Log options. log_opts(parser) args = parser.parse_args() if "cls" in args.target: assert args.labels_num is not None, "Cls target needs the denotation of the number of labels." # Load hyper-parameters from config file. if args.config_path: args = load_hyperparam(args) ranks_num = len(args.gpu_ranks) if args.deepspeed: if args.world_size > 1: args.dist_train = True else: args.dist_train = False else: if args.world_size > 1: # Multiprocessing distributed mode. assert torch.cuda.is_available(), "No available GPUs." assert ranks_num <= args.world_size, "Started processes exceed `world_size` upper limit." assert ranks_num <= torch.cuda.device_count(), "Started processes exceeds the available GPUs." args.dist_train = True args.ranks_num = ranks_num print("Using distributed mode for training.") elif args.world_size == 1 and ranks_num == 1: # Single GPU mode. assert torch.cuda.is_available(), "No available GPUs." args.gpu_id = args.gpu_ranks[0] assert args.gpu_id < torch.cuda.device_count(), "Invalid specified GPU device." args.dist_train = False args.single_gpu = True print("Using GPU %d for training." % args.gpu_id) else: # CPU mode. assert ranks_num == 0, "GPUs are specified, please check the arguments." args.dist_train = False args.single_gpu = False print("Using CPU mode for training.") trainer.train_and_validate(args) if __name__ == "__main__": main()