""" This script provides an example to wrap TencentPretrain for feature extraction. """ import sys import os import torch import torch.nn as nn import argparse import numpy as np tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.embeddings import * from tencentpretrain.encoders import * from tencentpretrain.targets import * from tencentpretrain.utils.constants import * from tencentpretrain.utils import * from tencentpretrain.utils.config import load_hyperparam from tencentpretrain.utils.misc import pooling from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts, tokenizer_opts def batch_loader(batch_size, src, seg): instances_num = src.size(0) for i in range(instances_num // batch_size): src_batch = src[i * batch_size : (i + 1) * batch_size] seg_batch = seg[i * batch_size : (i + 1) * batch_size] yield src_batch, seg_batch if instances_num > instances_num // batch_size * batch_size: src_batch = src[instances_num // batch_size * batch_size:] seg_batch = seg[instances_num // batch_size * batch_size:] yield src_batch, seg_batch def read_dataset(args, path): dataset = [] PAD_ID = args.tokenizer.vocab.get(PAD_TOKEN) with open(path, mode="r", encoding="utf-8") as f: for line in f: src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(line)) if len(src) == 0: continue src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) + src + args.tokenizer.convert_tokens_to_ids([SEP_TOKEN]) seg = [1] * len(src) if len(src) > args.seq_length: src = src[:args.seq_length] seg = seg[:args.seq_length] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(PAD_ID) dataset.append((src, seg)) return dataset class FeatureExtractor(torch.nn.Module): def __init__(self, args): super(FeatureExtractor, self).__init__() self.embedding = Embedding(args) for embedding_name in args.embedding: tmp_emb = str2embedding[embedding_name](args, len(args.tokenizer.vocab)) self.embedding.update(tmp_emb, embedding_name) self.encoder = str2encoder[args.encoder](args) self.pooling_type = args.pooling def forward(self, src, seg): emb = self.embedding(src, seg) output = self.encoder(emb, seg) output = pooling(output, seg, self.pooling_type) return output class WhiteningHandle(torch.nn.Module): """ Whitening operation. @ref: https://github.com/bojone/BERT-whitening/blob/main/demo.py """ def __init__(self, args, vecs): super(WhiteningHandle, self).__init__() self.kernel, self.bias = self._compute_kernel_bias(vecs) def forward(self, vecs, n_components=None, normal=True, pt=True): vecs = self._format_vecs_to_np(vecs) vecs = self._transform(vecs, n_components) vecs = self._normalize(vecs) if normal else vecs vecs = torch.tensor(vecs) if pt else vecs return vecs def _compute_kernel_bias(self, vecs): vecs = self._format_vecs_to_np(vecs) mu = vecs.mean(axis=0, keepdims=True) cov = np.cov(vecs.T) u, s, vh = np.linalg.svd(cov) W = np.dot(u, np.diag(1 / np.sqrt(s))) return W, -mu def _transform(self, vecs, n_components): w = self.kernel[:, :n_components] \ if isinstance(n_components, int) else self.kernel return (vecs + self.bias).dot(w) def _normalize(self, vecs): return vecs / (vecs**2).sum(axis=1, keepdims=True)**0.5 def _format_vecs_to_np(self, vecs): vecs_np = [] for vec in vecs: if isinstance(vec, list): vec = np.array(vec) elif torch.is_tensor(vec): vec = vec.detach().numpy() elif isinstance(vec, np.ndarray): vec = vec else: raise Exception('Unknown vec type.') vecs_np.append(vec) vecs_np = np.array(vecs_np) return vecs_np if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) parser.add_argument("--whitening_size", type=int, default=None, help="Output vector size after whitening.") tokenizer_opts(parser) args = parser.parse_args() args = load_hyperparam(args) args.tokenizer = str2tokenizer[args.tokenizer](args) # Build feature extractor model. model = FeatureExtractor(args) model = load_model(model, args.load_model_path) # For simplicity, we use DataParallel wrapper to use multiple GPUs. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = nn.DataParallel(model) model.eval() dataset = read_dataset(args, args.test_path) src = torch.LongTensor([sample[0] for sample in dataset]) seg = torch.LongTensor([sample[1] for sample in dataset]) feature_vectors = [] for i, (src_batch, seg_batch) in enumerate(batch_loader(args.batch_size, src, seg)): src_batch = src_batch.to(device) seg_batch = seg_batch.to(device) output = model(src_batch, seg_batch) feature_vectors.append(output.cpu().detach()) feature_vectors = torch.cat(feature_vectors, 0) # Vector whitening. if args.whitening_size is not None: whitening = WhiteningHandle(args, feature_vectors) feature_vectors = whitening(feature_vectors, args.whitening_size, pt=True) print("The size of feature vectors (sentences_num * vector size): {}".format(feature_vectors.shape)) torch.save(feature_vectors, args.prediction_path)