import sys import os import argparse import torch import torch.nn.functional as F import torch.distributed as dist import deepspeed tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, tencentpretrain_dir) from tencentpretrain.opts import deepspeed_opts from scripts.generate_seq2seq import * if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) parser.add_argument("--top_k", type=int, default=70) parser.add_argument("--top_p", type=float, default=0) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--tgt_vocab_path", type=str, help="Path of the vocabulary file.") tokenizer_opts(parser) parser.add_argument("--tgt_tokenizer", choices=[None, "bert", "char", "space", "xlmroberta"], default=None, help="Specify the tokenizer for target side.") parser.add_argument("--tgt_seq_length", type=int, default=128, help="Sequence length.") deepspeed_opts(parser) parser.add_argument("--mp_size", type=int, default=1, help="Model parallel size.") args = parser.parse_args() args.batch_size = 1 args = load_hyperparam(args) args.tokenizer = str2tokenizer[args.tokenizer](args) if args.tgt_tokenizer == None: args.tgt_tokenizer = args.tokenizer else: args.vocab_path = args.tgt_vocab_path args.tgt_tokenizer = str2tokenizer[args.tgt_tokenizer](args) args.tgt_vocab = args.tgt_tokenizer.vocab model = GenerateSeq2seq(args) model = load_model(model, args.load_model_path) deepspeed.init_distributed() model = deepspeed.init_inference(model=model, mp_size=args.mp_size, replace_method=None) rank = dist.get_rank() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if rank == 0: model.eval() with open(args.test_path, mode="r", encoding="utf-8") as f: line = f.readline().strip() src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(line) + [SEP_TOKEN]) seg = [1] * len(src) tgt = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN]) beginning_length = len(src) if len(src) > args.seq_length: src = src[:args.seq_length] seg = seg[:args.seq_length] src_tensor, seg_tensor, tgt_tensor = torch.LongTensor([src]).to(device), torch.LongTensor([seg]).to(device), torch.LongTensor([tgt]).to(device) with open(args.prediction_path, mode="w", encoding="utf-8") as f: for i in range(args.tgt_seq_length-1): output = model(src_tensor, seg_tensor, tgt_tensor) next_token_logits = output[0][-1] / args.temperature filtered_logits = top_k_top_p_filtering(next_token_logits, args.top_k, args.top_p) next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) tgt_tensor = torch.cat([tgt_tensor, next_token.view(1, 1).to(device)], dim=1) f.write(line + "\n") generated_sentence = "".join( args.tgt_tokenizer.convert_ids_to_tokens([token_id.item() for token_id in tgt_tensor[0]]) ) f.write(generated_sentence)