import torch def load_model(model, model_path): """ Load model from saved weights. """ # import ipdb # ipdb.set_trace() if '.pt' in model_path: if hasattr(model, "module"): model.module.load_state_dict(torch.load(model_path, map_location="cpu")['module'], strict=False) else: model.load_state_dict(torch.load(model_path, map_location="cpu")['module'], strict=False) else: if hasattr(model, "module"): model.module.load_state_dict(torch.load(model_path, map_location="cpu"), strict=False) else: model.load_state_dict(torch.load(model_path, map_location="cpu"), strict=False) return model def _load_state_dict_into_model(model_to_load, model_path, start_prefix="", lora_pretrained_model_path=None): # Convert old format to new format if needed from a PyTorch state_dict # copy state_dict so _load_from_state_dict can modify it state_dict = torch.load(model_path, map_location="cpu") metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata if lora_pretrained_model_path is not None: lora_state_dict = torch.load(lora_pretrained_model_path, map_location="cpu") lora_metadata = getattr(lora_state_dict, "_metadata", None) lora_state_dict = lora_state_dict.copy() if lora_metadata is not None: lora_state_dict._metadata = lora_metadata error_msgs = [] # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module, state_dict, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) # Parameters of module and children will start with prefix. We can exit early if there are none in this # state_dict if len([key for key in state_dict if key.startswith(prefix)]) > 0: import deepspeed # In sharded models, each shard has only part of the full state_dict, so only gather # parameters that are in the current state_dict. named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] if len(params_to_gather) > 0: # because zero3 puts placeholders in model params, this context # manager gathers (unpartitions) the params of the current layer, then loads from # the state dict and then re-partitions them again with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): if torch.distributed.get_rank() == 0: module._load_from_state_dict(*args) for name, child in module._modules.items(): if child is not None: load(child, state_dict, prefix + name + ".") load(model_to_load, state_dict, prefix=start_prefix) if lora_pretrained_model_path is not None: load(model_to_load, lora_state_dict, prefix=start_prefix) del lora_state_dict # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so # it's safe to delete it. del state_dict return model_to_load