import torch import torch.nn as nn from tencentpretrain.utils.constants import * class LmTarget(nn.Module): """ Language Model Target """ def __init__(self, args, vocab_size): super(LmTarget, self).__init__() self.vocab_size = vocab_size self.hidden_size = args.hidden_size if "label_smoothing" in args: self.label_smoothing = args.label_smoothing else: self.label_smoothing = None if "ignore_index" in args and args.ignore_index: self.ignore_index = args.tokenizer.vocab.get(PAD_TOKEN) else: self.ignore_index = None self.output_layer = nn.Linear(self.hidden_size, self.vocab_size, bias=args.has_lmtarget_bias) self.softmax = nn.LogSoftmax(dim=-1) self.criterion = nn.NLLLoss() def lm(self, memory_bank, tgt_lm): # Language modeling (LM) with full softmax prediction. tgt_lm = tgt_lm.contiguous().view(-1) memory_bank = memory_bank.contiguous().view(-1, self.hidden_size) memory_bank = memory_bank[tgt_lm > 0, :] tgt_lm = tgt_lm[tgt_lm > 0] output = self.output_layer(memory_bank) output = self.softmax(output) denominator = torch.tensor(output.size(0) + 1e-6) if output.size(0) == 0: correct = torch.tensor(0.0) else: correct = torch.sum((output.argmax(dim=-1).eq(tgt_lm)).float()) if self.label_smoothing is None: loss = self.criterion(output, tgt_lm) else: if tgt_lm.dim() == output.dim() - 1: tgt_lm = tgt_lm.unsqueeze(-1) nll_loss = -output.gather(dim=-1, index=tgt_lm) smooth_loss = -output.sum(dim=-1, keepdim=True) if self.ignore_index is not None: pad_mask = tgt_lm.eq(self.ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) nll_loss = nll_loss.mean() smooth_loss = smooth_loss.mean() eps_i = self.label_smoothing / (output.size(-1) - 1) loss = (1.0 - self.label_smoothing - eps_i) * nll_loss + eps_i * smooth_loss return loss, correct, denominator def forward(self, memory_bank, tgt, seg): """ Args: memory_bank: [batch_size x seq_length x hidden_size] tgt: [batch_size x seq_length] Returns: loss: Language modeling loss. correct: Number of words that are predicted correctly. denominator: Number of predicted words. """ # Language modeling (LM) with full softmax prediction. loss, correct, denominator = self.lm(memory_bank, tgt) return loss, correct, denominator