# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch optimization for BERT model.""" import math from typing import Callable, Iterable, Tuple import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1): """ Create a schedule with a constant learning rate, using the learning rate set in optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch) def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1): """ Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(current_step: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1.0, num_warmup_steps)) return 1.0 return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): """ Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_training_steps (:obj:`int`): The total number of training steps. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(current_step: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) return max( 0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)) ) return LambdaLR(optimizer, lr_lambda, last_epoch) def get_tri_stage_schedule(optimizer, num_warmup_steps, num_decay_steps, num_training_steps, init_lr_scale=0.01, final_lr_scale=0.05, last_epoch=-1): """ Create a schedule with a learning rate that have three stages: a warmup stage, a hold stage and a decay stage. Implement the learning rate scheduler in https://arxiv.org/pdf/1904.08779.pdf - warmup stage, starting from `lr` * `init_lr_scale`, linearly increased to `lr` in `warmup_steps` iterations - hold stage, after `warmup_steps`, keep the LR as `lr` for `hold_steps` iterations - decay stage, after hold stage, decay LR exponetially to `lr` * `final_lr_scale` in `decay_steps`; after that LR is keep as `final_lr_scale` * `lr` During warmup:: init_lr = arg.init_lr_scale * arg.lr lrs = torch.linspace(init_lr, arg.lr, arg.warmup_steps) lr = lrs[update_num] During hold:: lr = arg.lr During decay:: decay_factor = - math.log(arg.final_lr_scale) / arg.decay_steps lr = arg.lr * exp(- (update_num - warmup_steps - decay_steps) * decay_factor) After that:: lr = arg.lr * arg.final_lr_scale Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_decay_steps (:obj:`int`): The number of steps for the decay phase. num_training_steps (:obj:`int`): The total number of training steps. decay_scale (:obj:`float`): last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_hold = optimizer.defaults["lr"] lr_int = lr_hold * init_lr_scale lr_end = lr_hold * final_lr_scale def lr_lambda(current_step: int): warmup_rate = (lr_hold - lr_int) / num_warmup_steps decay_factor = -math.log(final_lr_scale) / max(num_decay_steps, 1) if current_step < num_warmup_steps: return (lr_int + current_step * warmup_rate) / lr_hold elif current_step >= num_warmup_steps and current_step < num_training_steps - num_decay_steps: return 1 elif current_step <= num_training_steps: return math.exp(-decay_factor * (current_step - num_training_steps + num_decay_steps)) else: return lr_end / lr_hold return LambdaLR(optimizer, lr_lambda, last_epoch) def get_cosine_schedule_with_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1 ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_training_steps (:obj:`int`): The total number of training steps. num_cycles (:obj:`float`, `optional`, defaults to 0.5): The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0 following a half-cosine). last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) return LambdaLR(optimizer, lr_lambda, last_epoch) def get_cosine_with_hard_restarts_schedule_with_warmup( optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1 ): """ Create a schedule with a learning rate that decreases following the values of the cosine function between the initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases linearly between 0 and the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_training_steps (:obj:`int`): The total number of training steps. num_cycles (:obj:`int`, `optional`, defaults to 1): The number of hard restarts to use. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ def lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) if progress >= 1.0: return 0.0 return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0)))) return LambdaLR(optimizer, lr_lambda, last_epoch) def get_polynomial_decay_schedule_with_warmup( optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1 ): """ Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the optimizer to end lr defined by `lr_end`, after a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_training_steps (:obj:`int`): The total number of training steps. lr_end (:obj:`float`, `optional`, defaults to 1e-7): The end LR. power (:obj:`float`, `optional`, defaults to 1.0): Power factor. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. Note: `power` defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37 Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr_init = optimizer.defaults["lr"] assert lr_init > lr_end, f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" def lr_lambda(current_step: int): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lr_range = lr_init - lr_end decay_steps = num_training_steps - num_warmup_steps pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps decay = lr_range * pct_remaining ** power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(optimizer, lr_lambda, last_epoch) def get_inverse_square_root_schedule_with_warmup( optimizer, num_warmup_steps, num_training_steps, warmup_init_lr=0.0, last_epoch=-1 ): """ Create a schedule with a learning rate that Decay the LR based on the inverse square root of the update number. After a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. Args: optimizer (:class:`~torch.optim.Optimizer`): The optimizer for which to schedule the learning rate. num_warmup_steps (:obj:`int`): The number of steps for the warmup phase. num_training_steps (:obj:`int`): The total number of training steps. warmup_init_lr (:obj:`float`, `optional`, defaults to 0): The initial LR for warmup. last_epoch (:obj:`int`, `optional`, defaults to -1): The index of the last epoch when resuming training. During warmup:: lrs = torch.linspace(arg.warmup_init_lr, arg.lr, arg.warmup_updates) lr = lrs[update_num] After warmup:: decay_factor = arg.lr * sqrt(arg.warmup_updates) lr = decay_factor / sqrt(update_num) Return: :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. """ lr = optimizer.defaults["lr"] assert lr > warmup_init_lr, f"lr ({lr}) must be be bigger than initial lr ({warmup_init_lr})" def lr_lambda(current_step: int): if current_step < num_warmup_steps: lr_step = (lr - warmup_init_lr) / num_warmup_steps return (warmup_init_lr + current_step * lr_step) / lr elif current_step > num_training_steps: return 1e-7 / lr # as LambdaLR multiplies by lr_init else: decay_factor = lr * num_warmup_steps**0.5 return (decay_factor * current_step**-0.5) / lr return LambdaLR(optimizer, lr_lambda, last_epoch) class AdamW(Optimizer): """ Implements Adam algorithm with weight decay fix as introduced in `Decoupled Weight Decay Regularization `__. Parameters: params (:obj:`Iterable[torch.nn.parameter.Parameter]`): Iterable of parameters to optimize or dictionaries defining parameter groups. lr (:obj:`float`, `optional`, defaults to 1e-3): The learning rate to use. betas (:obj:`Tuple[float,float]`, `optional`, defaults to (0.9, 0.999)): Adam's betas parameters (b1, b2). eps (:obj:`float`, `optional`, defaults to 1e-6): Adam's epsilon for numerical stability. weight_decay (:obj:`float`, `optional`, defaults to 0): Decoupled weight decay to apply. correct_bias (:obj:`bool`, `optional`, defaults to `True`): Whether ot not to correct bias in Adam (for instance, in Bert TF repository they use :obj:`False`). """ def __init__( self, params: Iterable[torch.nn.parameter.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-6, weight_decay: float = 0.0, correct_bias: bool = True, ): if lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1])) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias) super().__init__(params, defaults) def step(self, closure: Callable = None): """ Performs a single optimization step. Arguments: closure (:obj:`Callable`, `optional`): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead") state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2) denom = exp_avg_sq.sqrt().add_(group["eps"]) step_size = group["lr"] if group["correct_bias"]: # No bias correction for Bert bias_correction1 = 1.0 - beta1 ** state["step"] bias_correction2 = 1.0 - beta2 ** state["step"] step_size = step_size * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(exp_avg, denom, value=-step_size) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. # Add weight decay at the end (fixed version) if group["weight_decay"] > 0.0: p.data.add_(p.data, alpha=-group["lr"] * group["weight_decay"]) return loss class Adafactor(Optimizer): """ AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py Paper: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` https://arxiv.org/abs/1804.04235 Note that this optimizer internally adjusts the learning rate depending on the *scale_parameter*, *relative_step* and *warmup_init* options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and `relative_step=False`. Arguments: params (:obj:`Iterable[torch.nn.parameter.Parameter]`): Iterable of parameters to optimize or dictionaries defining parameter groups. lr (:obj:`float`, `optional`): The external learning rate. eps (:obj:`Tuple[float, float]`, `optional`, defaults to (1e-30, 1e-3)): Regularization constants for square gradient and parameter scale respectively clip_threshold (:obj:`float`, `optional`, defaults 1.0): Threshold of root mean square of final gradient update decay_rate (:obj:`float`, `optional`, defaults to -0.8): Coefficient used to compute running averages of square beta1 (:obj:`float`, `optional`): Coefficient used for computing running averages of gradient weight_decay (:obj:`float`, `optional`, defaults to 0): Weight decay (L2 penalty) scale_parameter (:obj:`bool`, `optional`, defaults to :obj:`True`): If True, learning rate is scaled by root mean square relative_step (:obj:`bool`, `optional`, defaults to :obj:`True`): If True, time-dependent learning rate is computed instead of external learning rate warmup_init (:obj:`bool`, `optional`, defaults to :obj:`False`): Time-dependent learning rate computation depends on whether warm-up initialization is being used This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested. Recommended T5 finetuning settings: - Scheduled LR warm-up to fixed LR - disable relative updates - use clip threshold: https://arxiv.org/abs/2004.14546 Example:: Adafactor(model.parameters(), lr=1e-3, relative_step=False, warmup_init=True) - Alternatively, relative_step with warmup_init can be used. - Training without LR warmup or clip threshold is not recommended. Additional optimizer operations like gradient clipping should not be used alongside Adafactor. Usage:: # replace AdamW with Adafactor optimizer = Adafactor( model.parameters(), lr=1e-3, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, relative_step=False, scale_parameter=False, warmup_init=False ) """ def __init__( self, params, lr=None, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, scale_parameter=True, relative_step=True, warmup_init=False, ): if lr is not None and relative_step: raise ValueError("Cannot combine manual lr and relative_step options") if warmup_init and not relative_step: raise ValueError("warmup_init requires relative_step=True") defaults = dict( lr=lr, eps=eps, clip_threshold=clip_threshold, decay_rate=decay_rate, beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, relative_step=relative_step, warmup_init=warmup_init, ) super().__init__(params, defaults) @staticmethod def _get_lr(param_group, param_state): rel_step_sz = param_group["lr"] if param_group["relative_step"]: min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2 rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"])) param_scale = 1.0 if param_group["scale_parameter"]: param_scale = max(param_group["eps"][1], param_state["RMS"]) return param_scale * rel_step_sz @staticmethod def _get_options(param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group["beta1"] is not None return factored, use_first_moment @staticmethod def _rms(tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) @staticmethod def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col): r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_() c_factor = exp_avg_sq_col.rsqrt() return torch.mm(r_factor.unsqueeze(-1), c_factor.unsqueeze(0)) def step(self, closure=None): """ Performs a single optimization step Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError("Adafactor does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options(group, grad_shape) # State Initialization if len(state) == 0: state["step"] = 0 if use_first_moment: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) state["RMS"] = 0 else: if use_first_moment: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state["step"] += 1 state["RMS"] = self._rms(p_data_fp32) group["lr"] = self._get_lr(group, state) beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) update = (grad ** 2) + group["eps"][0] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-1)) exp_avg_sq_col.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-2)) # Approximation of exponential moving average of square of gradient update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) update.mul_(grad) else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(1.0 - beta2t, update) update = exp_avg_sq.rsqrt().mul_(grad) update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) update.mul_(group["lr"]) if use_first_moment: exp_avg = state["exp_avg"] exp_avg.mul_(group["beta1"]).add_(1 - group["beta1"], update) update = exp_avg if group["weight_decay"] != 0: p_data_fp32.add_(-group["weight_decay"] * group["lr"], p_data_fp32) p_data_fp32.add_(-update) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss