# -*- encoding:utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from tencentpretrain.utils.constants import * from tencentpretrain.utils.vocab import Vocab import collections import unicodedata import six import regex as re class Tokenizer(object): def __init__(self, args, is_src=True): self.vocab = None self.sp_model = None if is_src == True: spm_model_path = args.spm_model_path vocab_path = args.vocab_path else: spm_model_path = args.tgt_spm_model_path vocab_path = args.tgt_vocab_path if spm_model_path: try: import sentencepiece as spm except ImportError: raise ImportError("You need to install SentencePiece to use XLNetTokenizer: https://github.com/google/sentencepiece" "pip install sentencepiece") self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(spm_model_path) self.vocab = {self.sp_model.IdToPiece(i): i for i in range(self.sp_model.GetPieceSize())} else: self.vocab = Vocab() self.vocab.load(vocab_path, is_quiet=True) self.vocab = self.vocab.w2i self.inv_vocab = {v: k for k, v in self.vocab.items()} def tokenize(self, text): raise NotImplementedError def convert_tokens_to_ids(self, tokens): if self.sp_model: return [self.sp_model.PieceToId( printable_text(token)) for token in tokens] else: return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): if self.sp_model: return [self.sp_model.IdToPiece(id_) for id_ in ids] else: return convert_by_vocab(self.inv_vocab, ids) class CharTokenizer(Tokenizer): def __init__(self, args, is_src=True): super().__init__(args, is_src) def tokenize(self, text, use_vocab=True): if use_vocab: return [token if token in self.vocab else UNK_TOKEN for token in list(text.strip())] else: return [token for token in list(text.strip())] class SpaceTokenizer(Tokenizer): def __init__(self, args, is_src=True): super().__init__(args, is_src) def tokenize(self, text, use_vocab=True): if use_vocab: return [token if token in self.vocab else UNK_TOKEN for token in text.strip().split(" ")] else: return [token for token in text.strip().split(" ")] SPIECE_UNDERLINE = u"▁".encode("utf-8") def preprocess_text(inputs, remove_space=True, lower=False): """preprocess data by removing extra space and normalize data.""" outputs = inputs if remove_space: outputs = " ".join(inputs.strip().split()) if six.PY2 and isinstance(outputs, str): try: outputs = six.ensure_text(outputs, "utf-8") except UnicodeDecodeError: outputs = six.ensure_text(outputs, "latin-1") outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def encode_pieces(sp_model, text, return_unicode=True, sample=False): """turn sentences into word pieces.""" if six.PY2 and isinstance(text, six.text_type): text = six.ensure_binary(text, "utf-8") if not sample: pieces = sp_model.EncodeAsPieces(text) else: pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: piece = printable_text(piece) if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit(): cur_pieces = sp_model.EncodeAsPieces( six.ensure_binary(piece[:-1]).replace(SPIECE_UNDERLINE, b"")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) # note(zhiliny): convert back to unicode for py2 if six.PY2 and return_unicode: ret_pieces = [] for piece in new_pieces: if isinstance(piece, str): piece = six.ensure_text(piece, "utf-8") ret_pieces.append(piece) new_pieces = ret_pieces return new_pieces def encode_ids(sp_model, text, sample=False): pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample) ids = [sp_model.PieceToId(piece) for piece in pieces] return ids def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return six.ensure_text(text, "utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return six.ensure_text(text, "utf-8", "ignore") elif isinstance(text, six.text_type): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return six.ensure_text(text, "utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, six.text_type): return six.ensure_binary(text, "utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item] if item in vocab else vocab.get(UNK_TOKEN)) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class BertTokenizer(Tokenizer): """Runs end-to-end tokenziation.""" def __init__(self, args, is_src=True): super().__init__(args, is_src) if not args.spm_model_path: self.basic_tokenizer = BasicTokenizer(do_lower_case=args.do_lower_case if is_src else args.tgt_do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=UNK_TOKEN) def tokenize(self, text): if self.sp_model: split_tokens = encode_pieces(self.sp_model, text, return_unicode=False) else: split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens class BPETokenizer(Tokenizer): def __init__(self, args, is_src=True): super().__init__(args, is_src) self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(args.merges_path, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens class XLMRobertaTokenizer(Tokenizer): """Runs end-to-end tokenziation.""" def __init__(self, args, is_src=True): super().__init__(args, is_src) assert args.spm_model_path, \ "spm_model_path must provided for huggingface roberta tokenizer" special_tokens = ["", "", "", ""] vocab = [token for token in self.vocab if token not in special_tokens] vocab = special_tokens + vocab + [""] self.vocab = {k: v for v, k in enumerate(vocab)} self.inv_vocab = {v: k for k, v in self.vocab.items()} def tokenize(self, text): split_tokens = encode_pieces(self.sp_model, text, return_unicode=False) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ if do_lower_case == "true": self.do_lower_case = True else: self.do_lower_case = False def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + six.ensure_str(substr) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat in ("Cc", "Cf"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False class ImageTokenizer(Tokenizer): """ Virtual tokenizer for vqgan models """ def __init__(self, args, is_src=True): self.vocab = range(args.image_tokenizer["image_vocab_size"]) class VirtualTokenizer(Tokenizer): """ Virtual tokenizer for vit models """ def __init__(self, args, is_src=True): self.vocab = [] class TextImageTokenizer(BertTokenizer): """ Text and image tokenizer (BERT and VQGAN) """ def __init__(self, args, is_src=True): super().__init__(args, is_src) self.vocab_bias = len(self.vocab) for i in range(args.image_tokenizer["image_vocab_size"]): self.vocab[i + self.vocab_bias] = str(i)