""" This script provides an example to use prompt for classification inference. """ import sys import os tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.append(tencentpretrain_dir) from tencentpretrain.model_loader import load_model from tencentpretrain.opts import infer_opts, tokenizer_opts from finetune.run_classifier_prompt import * def read_dataset(args, path): dataset, columns = [], {} with open(path, mode="r", encoding="utf-8") as f: for line_id, line in enumerate(f): if line_id == 0: for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): columns[column_name] = i continue line = line.rstrip("\r\n").split("\t") mask_position = -1 tgt_token_id = [1] src = [args.tokenizer.vocab.get(CLS_TOKEN)] if "text_b" not in columns: # Sentence classification. text_a = line[columns["text_a"]] text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) max_length = args.seq_length - args.template_length - 2 text_a_token_id = text_a_token_id[:max_length] for prompt_token in args.prompt_template: if prompt_token == "[TEXT_A]": src += text_a_token_id elif prompt_token == "[ANS]": src += [args.tokenizer.vocab.get(MASK_TOKEN)] mask_position = len(src) - 1 else: src += prompt_token else: # Sentence-pair classification. text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] text_a_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a)) text_b_token_id = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_b)) max_length = args.seq_length - args.template_length - len(text_a_token_id) - 3 text_b_token_id = text_b_token_id[:max_length] for prompt_token in args.prompt_template: if prompt_token == "[TEXT_A]": src += text_a_token_id src += [args.tokenizer.vocab.get(SEP_TOKEN)] elif prompt_token == "[ANS]": src += [args.tokenizer.vocab.get(MASK_TOKEN)] mask_position = len(src) - 1 elif prompt_token == "[TEXT_B]": src += text_b_token_id else: src += prompt_token src += [args.tokenizer.vocab.get(SEP_TOKEN)] seg = [1] * len(src) PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] while len(src) < args.seq_length: src.append(PAD_ID) seg.append(0) tgt = [0] * len(src) tgt[mask_position] = tgt_token_id[0] dataset.append((src, tgt, seg)) return dataset def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) infer_opts(parser) tokenizer_opts(parser) parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") parser.add_argument("--prompt_id", type=str, default="chnsenticorp_char") parser.add_argument("--prompt_path", type=str, default="models/prompts.json") args = parser.parse_args() # Load the hyperparameters from the config file. args = load_hyperparam(args) # Build tokenizer. args.tokenizer = str2tokenizer[args.tokenizer](args) process_prompt_template(args) answer_position = [0] * len(args.tokenizer.vocab) for answer in args.answer_word_dict_inv: answer_position[int(args.tokenizer.vocab[answer])] = 1 args.answer_position = torch.LongTensor(answer_position) args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Build classification model and load parameters. model = ClozeTest(args) model = load_model(model, args.load_model_path) # For simplicity, we use DataParallel wrapper to use multiple GPUs. model = model.to(args.device) if torch.cuda.device_count() > 1: print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) model = torch.nn.DataParallel(model) dataset = read_dataset(args, args.test_path) src = torch.LongTensor([sample[0] for sample in dataset]) tgt = torch.LongTensor([sample[1] for sample in dataset]) seg = torch.LongTensor([sample[2] for sample in dataset]) batch_size = args.batch_size instances_num = src.size()[0] print("The number of prediction instances: ", instances_num) model.eval() with open(args.prediction_path, mode="w", encoding="utf-8") as f: f.write("label") if args.output_logits: f.write("\t" + "logits") if args.output_prob: f.write("\t" + "prob") f.write("\n") for _, (src_batch, tgt_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt, seg)): src_batch = src_batch.to(args.device) tgt_batch = tgt_batch.to(args.device) seg_batch = seg_batch.to(args.device) with torch.no_grad(): _, pred, logits = model(src_batch, tgt_batch, seg_batch) logits = logits[:, args.answer_position > 0] prob = nn.Softmax(dim=1)(logits) logits = logits.cpu().numpy().tolist() prob = prob.cpu().numpy().tolist() for j in range(len(pred)): f.write(str(pred[j])) if args.output_logits: f.write("\t" + " ".join([str(v) for v in logits[j]])) if args.output_prob: f.write("\t" + " ".join([str(v) for v in prob[j]])) f.write("\n") if __name__ == "__main__": main()