## Learning Visual Prior via Generative Pre-Training [[Arxiv](http://arxiv.org/abs/2305.13777)] [[Demo]()] [[Video](https://www.youtube.com/watch?v=8FDoBfxSY8I)] ## Updates - Gradio demo is available. - [Hugging Face demo will be available](). ## Quick Start ### Step 1 ``` # clone the repo git clone https://github.com/Sierkinhane/VisorGPT.git # go to directory cd VisorGPT # create a new environment conda create -n visorgpt python=3.8 # activate the new environment conda activate visorgpt # prepare the basic environments pip3 install -r requirements.txt # install controlnet and gligen cd demo/ControlNet pip3 install -v -e . cd ../demo/GLIGEN pip3 install -v -e . ``` ### Step 2 - Download pre-trained weights Download [visorgpt](https://drive.google.com/file/d/1Pk4UPNKBMH-0uRLmK5COYTca7FUrN8XY/view?usp=share_link), [controlnet-pose2img](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_openpose.pth), [controlnet-sd](https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors), [gligen-bbox2img](https://huggingface.co/gligen/gligen-generation-text-box/blob/main/diffusion_pytorch_model.bin), and put them as follow: ``` ├── demo/ | ├── ckpts | | ├── controlnet | | | ├── control_v11p_sd15_openpose.pth | | | ├── v1-5-pruned-emaonly.safetensors | | ├── gligen | | | ├── diffusion_pytorch_model_box.bin | | ├── visorgpt | | | ├── visorgpt_dagger_ta_tb.pt ``` ### Step 3 - Run demo ``` CUDA_VISIBLE_DEVICES=0 python3 gradio_demo.py ``` If you are using our code, please consider citing our paper. ``` @article{xie2023visorgpt, title={VisorGPT: Learning Visual Prior via Generative Pre-Training}, author={Xie, Jinheng and Ye, Kai and Li, Yudong and Li, Yuexiang and Lin, Kevin Qinghong and Zheng, Yefeng and Shen, Linlin and Shou, Mike Zheng}, journal={arXiv preprint arXiv:2305.13777}, year={2023} } ```