Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import json
|
5 |
+
import gradio as gr
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
import requests
|
9 |
+
|
10 |
+
from transformers import BertModel, BertTokenizerFast, AdamW
|
11 |
+
import tensorflow as tf
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
load_dotenv(override=True)
|
16 |
+
if not os.getenv("HF_API_KEY"):
|
17 |
+
raise ValueError("HF_API_KEY must be set")
|
18 |
+
hf_key = os.getenv('HF_API_KEY')
|
19 |
+
|
20 |
+
API_URL = "https://api-inference.huggingface.co/models/t4ai/distilbert-finetuned-t3-qa"
|
21 |
+
headers = {"Authorization": "Bearer " + hf_key }
|
22 |
+
|
23 |
+
def query_model(payload):
|
24 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
+
return response.json()
|
26 |
+
|
27 |
+
|
28 |
+
# contruct UI using Gradio
|
29 |
+
_booted = False
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column(scale=1):
|
34 |
+
context = gr.Textbox(label="Document Text", lines=25)
|
35 |
+
with gr.Column(scale=2):
|
36 |
+
chatbot = gr.Chatbot(label="T3Soft Bot", value=[(None, "Welcome! I am your QA assistant."), (None, "Please paste your document content in the panel to the left."), (None, "Then submit questions below!")])
|
37 |
+
msg = gr.Textbox(label="Ask your question")
|
38 |
+
clear = gr.ClearButton([msg, chatbot])
|
39 |
+
_chatbot = chatbot
|
40 |
+
|
41 |
+
def respond(message, context, chat_history):
|
42 |
+
|
43 |
+
if(len(context) == 0):
|
44 |
+
bot_message = "Hm, I don't see any document text, please paste in the box on the left."
|
45 |
+
else:
|
46 |
+
query_bot = query_model({"inputs": {"question": message, "context": context}})
|
47 |
+
if(len(query_bot)):
|
48 |
+
bot_message = query_bot['answer']
|
49 |
+
else:
|
50 |
+
bot_message = "I'm having trouble with this question, please try again."
|
51 |
+
|
52 |
+
|
53 |
+
chat_history.append((message, bot_message))
|
54 |
+
time.sleep(2)
|
55 |
+
return "", context, chat_history
|
56 |
+
|
57 |
+
msg.submit(respond, [msg, context, chatbot], [msg, context, chatbot])
|
58 |
+
|
59 |
+
demo.launch()
|
60 |
+
|