taesiri's picture
backup
bcc7d00
raw
history blame
7.22 kB
import os
import gradio as gr
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from peft import PeftModel
from huggingface_hub import login
import spaces
import json
import matplotlib.pyplot as plt
import io
import base64
def check_environment():
required_vars = ["HF_TOKEN"]
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Missing required environment variables: {', '.join(missing_vars)}\n"
"Please set the HF_TOKEN environment variable with your Hugging Face token"
)
# Login to Hugging Face
check_environment()
login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
# Load model and processor (do this outside the inference function to avoid reloading)
base_model_path = (
"taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
)
processor = AutoProcessor.from_pretrained(base_model_path)
model = MllamaForConditionalGeneration.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16,
device_map="cuda",
)
# model = PeftModel.from_pretrained(model, lora_weights_path)
model.tie_weights()
def describe_image_in_JSON(json_string):
try:
# First JSON decode
first_decode = json.loads(json_string)
# Second JSON decode - parse the actual data
final_data = json.loads(first_decode)
return final_data
except json.JSONDecodeError as e:
return f"Error parsing JSON: {str(e)}"
def create_color_palette_image(colors):
if not colors or not isinstance(colors, list):
return None
try:
# Validate color format
for color in colors:
if not isinstance(color, str) or not color.startswith("#"):
return None
# Create figure and axis
fig, ax = plt.subplots(figsize=(10, 2))
# Create rectangles for each color
for i, color in enumerate(colors):
ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))
# Set the view limits and aspect ratio
ax.set_xlim(0, len(colors))
ax.set_ylim(0, 1)
ax.set_xticks([])
ax.set_yticks([])
return fig # Return the matplotlib figure directly
except Exception as e:
print(f"Error creating color palette: {e}")
return None
@spaces.GPU
def inference(image):
if image is None:
return ["Please provide an image"] * 8
if not isinstance(image, Image.Image):
try:
image = Image.fromarray(image)
except Exception as e:
print(f"Image conversion error: {e}")
return ["Invalid image format"] * 8
# Prepare input
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Describe the image in JSON"},
],
}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
# Move inputs to the correct device
inputs = processor(
image, input_text, add_special_tokens=False, return_tensors="pt"
).to(model.device)
# Clear CUDA cache after inference
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=2048)
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
print(f"Inference error: {e}")
return ["Error during inference"] * 8
# Decode output
result = processor.decode(output[0], skip_special_tokens=True)
print("DEBUG: Full decoded output:", result)
try:
json_str = result.strip().split("assistant\n")[1].strip()
print("DEBUG: Extracted JSON string after split:", json_str)
except Exception as e:
print("DEBUG: Error splitting response:", e)
return ["Error extracting JSON from response"] * 8 + [
"Failed to extract JSON",
"Error",
]
parsed_json = describe_image_in_JSON(json_str)
if parsed_json:
# Create color palette visualization
colors = parsed_json.get("color_palette", [])
color_image = create_color_palette_image(colors)
# Convert lists to proper format for Gradio JSON components
character_list = json.dumps(parsed_json.get("character_list", []))
object_list = json.dumps(parsed_json.get("object_list", []))
texture_details = json.dumps(parsed_json.get("texture_details", []))
return (
parsed_json.get("description", "Not available"),
parsed_json.get("scene_description", "Not available"),
character_list,
object_list,
texture_details,
parsed_json.get("lighting_details", "Not available"),
color_image,
json_str,
"", # Error box
"Analysis complete", # Status
)
return ["Error parsing response"] * 8 + ["Failed to parse JSON", "Error"]
# Update Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# BugsBunny-LLama-3.2-11B-Base-Medium Demo")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="pil",
label="Upload Image",
elem_id="large-image",
)
submit_btn = gr.Button("Analyze Image", variant="primary")
with gr.Tabs():
with gr.Tab("Structured Results"):
with gr.Column(scale=1):
description_output = gr.Textbox(
label="Description",
lines=4,
)
scene_output = gr.Textbox(
label="Scene Description",
lines=2,
)
characters_output = gr.JSON(
label="Characters",
)
objects_output = gr.JSON(
label="Objects",
)
textures_output = gr.JSON(
label="Texture Details",
)
lighting_output = gr.Textbox(
label="Lighting Details",
lines=2,
)
color_palette_output = gr.Plot(
label="Color Palette",
)
with gr.Tab("Raw Output"):
raw_output = gr.Textbox(
label="Raw JSON Response",
lines=25,
max_lines=30,
)
error_box = gr.Textbox(label="Error Messages", visible=False)
with gr.Row():
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
submit_btn.click(
fn=inference,
inputs=[image_input],
outputs=[
description_output,
scene_output,
characters_output,
objects_output,
textures_output,
lighting_output,
color_palette_output,
raw_output,
error_box,
status_text,
],
api_name="analyze",
)
demo.launch(share=True)