taesiri's picture
switching to gpt-3.5-turbo
ed2d211
import os
from langchain.llms import OpenAI, OpenAIChat
os.system("pip install -U gradio")
import sys
import gradio as gr
os.system(
"pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html"
)
# clone and install Detic
os.system(
"git clone https://github.com/facebookresearch/Detic.git --recurse-submodules"
)
os.chdir("Detic")
# Install detectron2
import torch
# Some basic setup:
# Setup detectron2 logger
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import sys
import numpy as np
import os, json, cv2, random
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
# Detic libraries
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/")
sys.path.insert(0, "third_party/CenterNet2/")
from centernet.config import add_centernet_config
from detic.config import add_detic_config
from detic.modeling.utils import reset_cls_test
from PIL import Image
# Build the detector and download our pretrained weights
cfg = get_cfg()
add_centernet_config(cfg)
add_detic_config(cfg)
cfg.MODEL.DEVICE = "cpu"
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml")
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand"
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = (
True # For better visualization purpose. Set to False for all classes.
)
predictor = DefaultPredictor(cfg)
BUILDIN_CLASSIFIER = {
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy",
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy",
"openimages": "datasets/metadata/oid_clip_a+cname.npy",
"coco": "datasets/metadata/coco_clip_a+cname.npy",
}
BUILDIN_METADATA_PATH = {
"lvis": "lvis_v1_val",
"objects365": "objects365_v2_val",
"openimages": "oid_val_expanded",
"coco": "coco_2017_val",
}
session_token = os.environ.get("SessionToken")
def generate_caption(object_list_str, api_key, temperature):
query = f"You are an intelligent image captioner. I will hand you the objects and their position, and you should give me a detailed description for the photo. In this photo we have the following objects\n{object_list_str}"
llm = OpenAIChat(
model_name="gpt-3.5-turbo", openai_api_key=api_key, temperature=temperature
)
try:
caption = llm(query)
caption = caption.strip()
except:
caption = "Sorry, something went wrong!"
return caption
def inference(img, vocabulary, api_key, temperature):
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary])
classifier = BUILDIN_CLASSIFIER[vocabulary]
num_classes = len(metadata.thing_classes)
reset_cls_test(predictor.model, classifier, num_classes)
im = cv2.imread(img)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1], metadata)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
detected_objects = []
object_list_str = []
box_locations = outputs["instances"].pred_boxes
box_loc_screen = box_locations.tensor.cpu().numpy()
for i, box_coord in enumerate(box_loc_screen):
x0, y0, x1, y1 = box_coord
width = x1 - x0
height = y1 - y0
predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]]
detected_objects.append(
{
"prediction": predicted_label,
"x": int(x0),
"y": int(y0),
"w": int(width),
"h": int(height),
}
)
object_list_str.append(
f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})"
)
if api_key is not None:
gpt_response = generate_caption(object_list_str, api_key, temperature)
else:
gpt_response = "Please paste your OpenAI key to use"
return (
Image.fromarray(np.uint8(out.get_image())).convert("RGB"),
gpt_response,
)
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Image Captioning using Detic and ChatGPT with LangChain 🦜️🔗")
gr.Markdown(
"Use Detic to detect objects in an image and then use `gpt-3.5-turbo` to describe the image."
)
with gr.Row():
with gr.Column():
inp = gr.Image(label="Input Image", type="filepath")
with gr.Column():
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...)",
show_label=False,
lines=1,
type="password",
)
temperature = gr.Slider(0, 1, 0.1, label="Temperature")
vocab = gr.Dropdown(
["lvis", "objects365", "openimages", "coco"],
label="Detic Vocabulary",
value="lvis",
)
btn_detic = gr.Button("Run Detic and ChatGPT")
with gr.Column():
output_desc = gr.Textbox(label="Description Description", lines=5)
outviz = gr.Image(label="Visualization", type="pil")
btn_detic.click(
fn=inference,
inputs=[inp, vocab, openai_api_key_textbox, temperature],
outputs=[outviz, output_desc],
)
demo.launch(debug=False)