File size: 2,143 Bytes
59afef3
09c0a40
d8e2347
09c0a40
d8e2347
09c0a40
 
d30d41e
d8e2347
d45c55b
 
d8e2347
09c0a40
 
 
 
 
 
d8e2347
 
09c0a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8e2347
09c0a40
 
 
d8e2347
 
 
 
d30d41e
 
d8e2347
 
 
 
 
 
 
d30d41e
09c0a40
d8e2347
09c0a40
d30d41e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import transformers
import time
from huggingface_hub import hf_hub_download
import streamlit as st


@st.cache(allow_output_mutation=True)
def load_model():
    fpath = hf_hub_download("OpenDungeon/gpt-j-8bit-ffbgem", "model.pt")
    qmodel = torch.load(fpath)
    return transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B"), qmodel


def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50):
    past_key_values = None  # used to keep track of conversation history
    input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False)
    output = [""] * batch
    batch_time = 0
    
    with torch.inference_mode():
        for i in range(limit_tokens + 20):
            if i == 5:
                start_time = time.perf_counter()

            outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values)
            last_logits = outputs.logits[:, -1]

            for j in range(batch):
                last_logits[j, last_logits[j].topk(k=10).indices] += 10

            past_key_values = outputs.past_key_values
            token_ix = torch.multinomial(last_logits.softmax(-1), 1)
            output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)]

            if single_hook is not None:
                single_hook(tokenizer.decode(token_ix[0]))
            if i == limit_tokens:
                batch_time = (time.perf_counter() - start_time) / (i - 4)
                break

            input_dict = dict(input_ids=token_ix)
    return output, batch_time


tokenizer, model = load_model()
text = st.text_area("Prefix", value="DM: You enter the room.")
batch = st.number_input("Variants", value=5)

t = st.empty()
firstline = ""

def PrintSome(text):
    global t, firstline
    firstline += text
    t.markdown(f"{firstline}...")

choices, batch_time = PrintContinuation(text, model, PrintSome, batch, 50)

final_page = ""
for i in range(batch):
    final_page += f"## choice №{i + 1}  \n{choices[i]}  \n______  \n"
final_page = f"Seconds per batch: {batch_time}, Batch: {batch}"

t.markdown(final_page)