Bloom_chat / app.py
tafxle's picture
Update app.py
09c0a40
raw
history blame
1.66 kB
import torch
import transformers
import numpy as np
from huggingface_hub import hf_hub_download
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
hf_hub_download("OpenDungeon/gpt-j-8bit-ffbgem", "model.pt")
qmodel = torch.load("model.pt")
def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50):
past_key_values = None # used to keep track of conversation history
input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False)
output = [""] * batch
with torch.inference_mode():
for i in range(limit_tokens + 20):
if i == 5:
start_time = time.perf_counter()
outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values)
last_logits = outputs.logits[:, -1]
for j in range(batch):
last_logits[j, last_logits[j].topk(k=10).indices] += 10
past_key_values = outputs.past_key_values
token_ix = torch.multinomial(last_logits.softmax(-1), 1)
output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)]
if single_hook is not None:
single_hook(tokenizer.decode(token_ix[0]))
if i == limit_tokens:
print()
print((time.perf_counter() - start_time) / (i - 4), "s per token")
break
input_dict = dict(input_ids=token_ix)
print()
return output
import streamlit as st
def process(text):
return text[::-1]
text = st.text_area("Prompt")
t.markdown(f"## {process(text)[0:i]}...")