Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
import numpy as np | |
from huggingface_hub import hf_hub_download | |
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") | |
hf_hub_download("OpenDungeon/gpt-j-8bit-ffbgem", "model.pt") | |
qmodel = torch.load("model.pt") | |
def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50): | |
past_key_values = None # used to keep track of conversation history | |
input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False) | |
output = [""] * batch | |
with torch.inference_mode(): | |
for i in range(limit_tokens + 20): | |
if i == 5: | |
start_time = time.perf_counter() | |
outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values) | |
last_logits = outputs.logits[:, -1] | |
for j in range(batch): | |
last_logits[j, last_logits[j].topk(k=10).indices] += 10 | |
past_key_values = outputs.past_key_values | |
token_ix = torch.multinomial(last_logits.softmax(-1), 1) | |
output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)] | |
if single_hook is not None: | |
single_hook(tokenizer.decode(token_ix[0])) | |
if i == limit_tokens: | |
print() | |
print((time.perf_counter() - start_time) / (i - 4), "s per token") | |
break | |
input_dict = dict(input_ids=token_ix) | |
print() | |
return output | |
import streamlit as st | |
def process(text): | |
return text[::-1] | |
text = st.text_area("Prompt") | |
t.markdown(f"## {process(text)[0:i]}...") |