Spaces:
Runtime error
Runtime error
import torch | |
import transformers | |
import time | |
from huggingface_hub import snapshot_download | |
import streamlit as st | |
import copy | |
from transformers import AutoConfig, GPTJForCausalLM | |
from transformers.models.gptj.modeling_gptj import GPTJBlock | |
from tqdm import trange | |
def load_model(): | |
for down in trange(1, disable=True): | |
fpath = snapshot_download("OpenDungeon/gpt-j-8bit-ffbgem", revision="separate") | |
config = AutoConfig.from_pretrained("EleutherAI/gpt-j-6B") | |
qconfig = torch.quantization.get_default_qconfig('fbgemm') | |
torch.backends.quantized.engine = 'fbgemm' | |
n_layer, config.n_layer = config.n_layer, 0 | |
model = GPTJForCausalLM(config) | |
model.load_state_dict(torch.load(fpath + "/blocks/base.pt")) | |
ref_block = torch.quantization.quantize_dynamic( | |
GPTJBlock(config), | |
{torch.nn.Linear: qconfig}, | |
dtype=torch.qint8, | |
inplace=True | |
) | |
for i in trange(n_layer): | |
new_block = copy.deepcopy(ref_block) | |
new_block.load_state_dict(torch.load(f"{fpath}/blocks/block{i}.pt")) | |
model.transformer.h.append(new_block) | |
config.n_layer = len(model.transformer.h) | |
del ref_block | |
return transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B"), model | |
def PrintContinuation(prompt, local_model, single_hook=None, batch=1, limit_tokens = 50): | |
past_key_values = None # used to keep track of conversation history | |
input_dict = tokenizer([prompt] * batch, return_tensors='pt', padding=False) | |
output = [""] * batch | |
batch_time = 0 | |
with torch.inference_mode(): | |
for i in range(limit_tokens + 20): | |
if i == 5: | |
start_time = time.perf_counter() | |
outputs = local_model.forward(**input_dict, use_cache=True, past_key_values=past_key_values) | |
last_logits = outputs.logits[:, -1] | |
for j in range(batch): | |
last_logits[j, last_logits[j].topk(k=10).indices] += 10 | |
past_key_values = outputs.past_key_values | |
token_ix = torch.multinomial(last_logits.softmax(-1), 1) | |
output = [stream + tokenizer.decode(ix) for stream, ix in zip(output, token_ix)] | |
if single_hook is not None: | |
single_hook(tokenizer.decode(token_ix[0])) | |
if i == limit_tokens: | |
batch_time = (time.perf_counter() - start_time) / (i - 4) | |
break | |
input_dict = dict(input_ids=token_ix) | |
return output, batch_time | |
import sys | |
def Sureprint(text): | |
text = f"\nDDBG: {text}\n" | |
print(text, flush=True) | |
print(text, file=sys.stderr, flush=True) | |
Sureprint("ready to load") | |
tokenizer, model = load_model() | |
Sureprint("loaded") | |
text = st.text_area("Prefix", value="DM: You enter the room.") | |
Sureprint(f"text acquired '{text}'") | |
batch = st.number_input("Variants", value=5) | |
t = st.empty() | |
firstline = "" | |
def PrintSome(text): | |
global t, firstline | |
firstline += text | |
t.markdown(f"{firstline}...") | |
Sureprint("before inference") | |
choices, batch_time = PrintContinuation(text, model, PrintSome, batch, 50) | |
Sureprint("after inference") | |
final_page = "" | |
for i in range(batch): | |
final_page += f"#### choice №{i + 1} \n{choices[i]} \n______ \n" | |
final_page += f"Seconds per batch: {batch_time}, Batch: {batch}" | |
t.markdown(final_page) | |
Sureprint("all done") | |