Spaces:
Sleeping
Sleeping
File size: 4,468 Bytes
fb115f3 ed3b297 73e00ea ed56b0d ed3b297 73e00ea 8df49ab 8d5edcc 73e00ea ed3b297 dd56502 cabb4c3 293af25 cabb4c3 73e00ea dd56502 73e00ea cabb4c3 dd56502 cabb4c3 3cf9170 cabb4c3 73e00ea ed3b297 73e00ea ed56b0d ed3b297 73e00ea ed56b0d 73e00ea 8df49ab dd56502 0fa729c 8df49ab 0fa729c 73e00ea ed3b297 cabb4c3 73e00ea cabb4c3 8df49ab 73e00ea ed3b297 73e00ea cabb4c3 dd56502 73e00ea dd56502 cabb4c3 73e00ea cabb4c3 73e00ea cabb4c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import os
import requests
import streamlit as st
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import AutoModel, AutoTokenizer
import torch
# Set up Groq API key
GROQ_API_KEY = os.getenv("LawersGuideAPIKey")
# Initialize embedding model (using sentence-transformers model)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
embedding_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
# List of Hugging Face PDF URLs
PDF_URLS = [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/administrator92ada0936848e501425591b4ad0cd417.pdf",
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/Pakistan%20Penal%20Code.pdf",
# Add more document links as needed
]
# Helper function to convert Hugging Face blob URLs to direct download URLs
def get_huggingface_raw_url(url):
if "huggingface.co" in url and "/blob/" in url:
return url.replace("/blob/", "/resolve/")
return url
# Fetch and extract text from PDF files hosted on Hugging Face
def fetch_pdf_text_from_huggingface(urls):
text = ""
for url in urls:
raw_url = get_huggingface_raw_url(url) # Convert to direct download link
response = requests.get(raw_url)
if response.status_code == 200:
pdf_file = BytesIO(response.content)
try:
pdf_reader = PdfReader(pdf_file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
except Exception as e:
st.error(f"Failed to read PDF from URL {url}: {e}")
else:
st.error(f"Failed to fetch PDF from URL: {url}")
return text
# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embedding function
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create a FAISS vector store with embeddings
@st.cache_resource
def load_or_create_vector_store(text_chunks):
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
return vector_store
# Call Groq API for generating summary based on the query and retrieved text
def generate_summary_with_groq(query, retrieved_text):
url = "https://api.groq.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"messages": [
{"role": "user", "content": f"{query}\n\nRelated information:\n{retrieved_text}"}
],
"model": "llama3-8b-8192",
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
st.error("Failed to generate summary with Groq API")
return "Error in Groq API response"
# Generate response for user query
def user_input(user_question, vector_store):
docs = vector_store.similarity_search(user_question)
context_text = " ".join([doc.page_content for doc in docs])
return generate_summary_with_groq(user_question, context_text)
# Main function to run the Streamlit app
def main():
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π")
st.title("π Query PDF Documents on Hugging Face")
# Load documents from Hugging Face
raw_text = fetch_pdf_text_from_huggingface(PDF_URLS)
text_chunks = get_text_chunks(raw_text)
vector_store = load_or_create_vector_store(text_chunks)
# User question input
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
if st.button("Get Response"):
if not user_question:
st.warning("Please enter a question before submitting.")
else:
with st.spinner("Generating response..."):
answer = user_input(user_question, vector_store)
st.markdown(f"**π€ AI:** {answer}")
if __name__ == "__main__":
main()
|