tahirsher's picture
Update app.py
8d5edcc verified
raw
history blame
4.47 kB
import os
import requests
import streamlit as st
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import AutoModel, AutoTokenizer
import torch
# Set up Groq API key
GROQ_API_KEY = os.getenv("LawersGuideAPIKey")
# Initialize embedding model (using sentence-transformers model)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
embedding_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
# List of Hugging Face PDF URLs
PDF_URLS = [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/administrator92ada0936848e501425591b4ad0cd417.pdf",
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/blob/main/Pakistan%20Penal%20Code.pdf",
# Add more document links as needed
]
# Helper function to convert Hugging Face blob URLs to direct download URLs
def get_huggingface_raw_url(url):
if "huggingface.co" in url and "/blob/" in url:
return url.replace("/blob/", "/resolve/")
return url
# Fetch and extract text from PDF files hosted on Hugging Face
def fetch_pdf_text_from_huggingface(urls):
text = ""
for url in urls:
raw_url = get_huggingface_raw_url(url) # Convert to direct download link
response = requests.get(raw_url)
if response.status_code == 200:
pdf_file = BytesIO(response.content)
try:
pdf_reader = PdfReader(pdf_file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
except Exception as e:
st.error(f"Failed to read PDF from URL {url}: {e}")
else:
st.error(f"Failed to fetch PDF from URL: {url}")
return text
# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embedding function
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create a FAISS vector store with embeddings
@st.cache_resource
def load_or_create_vector_store(text_chunks):
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
return vector_store
# Call Groq API for generating summary based on the query and retrieved text
def generate_summary_with_groq(query, retrieved_text):
url = "https://api.groq.com/v1/chat/completions"
headers = {
"Authorization": f"Bearer {GROQ_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"messages": [
{"role": "user", "content": f"{query}\n\nRelated information:\n{retrieved_text}"}
],
"model": "llama3-8b-8192",
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
st.error("Failed to generate summary with Groq API")
return "Error in Groq API response"
# Generate response for user query
def user_input(user_question, vector_store):
docs = vector_store.similarity_search(user_question)
context_text = " ".join([doc.page_content for doc in docs])
return generate_summary_with_groq(user_question, context_text)
# Main function to run the Streamlit app
def main():
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="πŸ“„")
st.title("πŸ“„ Query PDF Documents on Hugging Face")
# Load documents from Hugging Face
raw_text = fetch_pdf_text_from_huggingface(PDF_URLS)
text_chunks = get_text_chunks(raw_text)
vector_store = load_or_create_vector_store(text_chunks)
# User question input
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
if st.button("Get Response"):
if not user_question:
st.warning("Please enter a question before submitting.")
else:
with st.spinner("Generating response..."):
answer = user_input(user_question, vector_store)
st.markdown(f"**πŸ€– AI:** {answer}")
if __name__ == "__main__":
main()