Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
10 |
import torch
|
11 |
|
12 |
# Set up Groq API key
|
13 |
-
GROQ_API_KEY = os.getenv("LawersGuideAPIKey")
|
14 |
|
15 |
# Initialize embedding model (using sentence-transformers model)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
@@ -94,7 +94,7 @@ def user_input(user_question, vector_store):
|
|
94 |
# Main function to run the Streamlit app
|
95 |
def main():
|
96 |
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π")
|
97 |
-
st.title("π
|
98 |
|
99 |
# Load documents from Hugging Face
|
100 |
raw_text = fetch_pdf_text_from_huggingface(PDF_URLS)
|
|
|
10 |
import torch
|
11 |
|
12 |
# Set up Groq API key
|
13 |
+
#GROQ_API_KEY = os.getenv("LawersGuideAPIKey")
|
14 |
|
15 |
# Initialize embedding model (using sentence-transformers model)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
94 |
# Main function to run the Streamlit app
|
95 |
def main():
|
96 |
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π")
|
97 |
+
st.title("π Gen AI Lawyers Guide")
|
98 |
|
99 |
# Load documents from Hugging Face
|
100 |
raw_text = fetch_pdf_text_from_huggingface(PDF_URLS)
|