tahirsher commited on
Commit
cabb4c3
β€’
1 Parent(s): 875148c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -97
app.py CHANGED
@@ -1,134 +1,81 @@
1
- we want to build RAG base application in which 3 to 4 different PDF documents will be placed at github . Application will be deployed on hugging face using streamlit interface. our objective is user will inquire the query and our application will give pin point answer and very short but comprehensive summary upto maximum 250 words about that particular question. i already developed an application but it asks to upload document on run time means on user interface and then extract information. similarly we need only query block and it should extract required info from different Pdfs and give pin point answer. Sample of code is given below nad amend its as per requirement:
2
-
3
  from PyPDF2 import PdfReader
4
  from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
6
  from langchain.vectorstores import FAISS
7
- from langchain.chains.question_answering import load_qa_chain
8
- from langchain.prompts import PromptTemplate
9
- import google.generativeai as genai
10
  import streamlit as st
 
 
11
 
12
- # Configure Google Generative AI API key
13
- GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
14
- genai.configure(api_key=GOOGLE_API_KEY)
15
 
 
 
 
 
 
 
16
 
17
- @st.cache_data
18
- def get_pdf_text(pdf_docs):
19
  text = ""
20
- for pdf in pdf_docs:
21
- pdf_reader = PdfReader(pdf)
22
- if pdf_reader.is_encrypted:
23
- try:
24
- pdf_reader.decrypt("")
25
- except Exception as e:
26
- st.error(f"Failed to decrypt PDF: {e}")
27
- return ""
28
- for page in pdf_reader.pages:
29
- page_text = page.extract_text()
30
- if page_text:
31
- text += page_text
32
  return text
33
 
34
-
35
  @st.cache_data
36
  def get_text_chunks(text):
37
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
38
  chunks = text_splitter.split_text(text)
39
  return chunks
40
 
41
-
42
  @st.cache_resource
43
  def load_or_create_vector_store(text_chunks):
44
- if not text_chunks:
45
- raise ValueError("Text chunks are empty. Cannot create vector store.")
46
-
47
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=GOOGLE_API_KEY)
48
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
49
- vector_store.save_local("faiss_index")
50
  return vector_store
51
 
 
 
 
 
 
 
 
 
52
 
53
- def get_conversational_chain():
54
- prompt_template = """
55
- Answer the question as detailed as possible from the provided context. If the answer is not in the provided context, say "answer is not available in the context".
56
-
57
- Context:\n {context}?\n
58
- Question: \n{question}\n
59
-
60
- Answer:
61
- """
62
- model = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0.3, google_api_key=GOOGLE_API_KEY)
63
- prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
64
- chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
65
- return chain
66
-
67
-
68
- def user_input(user_question, chain, vector_store):
69
  docs = vector_store.similarity_search(user_question)
70
- response = chain(
71
- {"input_documents": docs, "question": user_question},
72
- return_only_outputs=True
73
- )
74
- return response['output_text']
75
-
76
 
77
  def main():
78
- st.set_page_config(page_title="Chat with PDF", layout="centered", page_icon="πŸ“„")
79
- st.title("πŸ“„ Chat with Your PDF Document")
80
-
81
- # Initialize chat history and vector store in session state
82
- if 'chat_history' not in st.session_state:
83
- st.session_state.chat_history = []
84
- if 'vector_store' not in st.session_state:
85
- st.session_state.vector_store = None
86
-
87
- # Sidebar for PDF upload
88
- st.sidebar.title("Upload PDF")
89
- pdf_docs = st.sidebar.file_uploader("Upload your PDF Files", type=["pdf"], accept_multiple_files=True)
90
 
91
- if pdf_docs:
92
- if st.sidebar.button("Process PDFs"):
93
- with st.spinner("Processing..."):
94
- raw_text = get_pdf_text(pdf_docs)
95
- text_chunks = get_text_chunks(raw_text)
96
-
97
- if not text_chunks:
98
- st.error("No text extracted from the PDFs. Please check the content.")
99
- else:
100
- st.session_state.vector_store = load_or_create_vector_store(text_chunks)
101
- st.success("PDF processed successfully!")
102
-
103
- st.sidebar.markdown("---")
104
- st.sidebar.markdown(
105
- "<footer style='text-align: center;'>Created by <span style='font-weight: 600;'>Ghulam Mahiyudin</span></footer>",
106
- unsafe_allow_html=True)
107
-
108
- # Create conversational chain
109
- chain = get_conversational_chain()
110
 
111
  # User question input
112
  user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
113
 
114
  if st.button("Get Response"):
115
- # Validate user input
116
  if not user_question:
117
  st.warning("Please enter a question before submitting.")
118
- elif st.session_state.vector_store is None:
119
- st.warning("Please upload and process a PDF document before asking a question.")
120
  else:
121
  with st.spinner("Generating response..."):
122
- answer = user_input(user_question, chain, st.session_state.vector_store)
123
- # Add question and answer to chat history
124
- st.session_state.chat_history.insert(0, (user_question, answer)) # Insert at the top
125
-
126
- # Display chat history with styling
127
- if st.session_state.chat_history:
128
- for question, answer in st.session_state.chat_history:
129
- st.write("---")
130
- st.markdown(f"**πŸ‘€ You:** _{question}_")
131
- st.markdown(f"**πŸ€– AI:** {answer}")
132
 
133
  if __name__ == "__main__":
134
- main()
 
 
 
1
  from PyPDF2 import PdfReader
2
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
3
  from langchain.vectorstores import FAISS
4
+ from transformers import pipeline
 
 
5
  import streamlit as st
6
+ import requests
7
+ from io import BytesIO
8
 
9
+ # Set up Hugging Face model pipeline for text generation
10
+ pipe = pipeline("text-generation", model="meta-llama/Llama-Guard-3-8B-INT8")
 
11
 
12
+ # List of GitHub PDF URLs
13
+ PDF_URLS = [
14
+ "https://github.com/TahirSher/GenAI_Lawyers_Guide/blob/main/bi%20pat%20graphs.pdf",
15
+ "https://github.com/TahirSher/GenAI_Lawyers_Guide/blob/main/bi-partite.pdf",
16
+ # Add more document links as needed
17
+ ]
18
 
19
+ def fetch_pdf_text_from_github(urls):
 
20
  text = ""
21
+ for url in urls:
22
+ response = requests.get(url)
23
+ if response.status_code == 200:
24
+ pdf_file = BytesIO(response.content)
25
+ pdf_reader = PdfReader(pdf_file)
26
+ for page in pdf_reader.pages:
27
+ page_text = page.extract_text()
28
+ if page_text:
29
+ text += page_text
30
+ else:
31
+ st.error(f"Failed to fetch PDF from URL: {url}")
 
32
  return text
33
 
 
34
  @st.cache_data
35
  def get_text_chunks(text):
36
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
37
  chunks = text_splitter.split_text(text)
38
  return chunks
39
 
 
40
  @st.cache_resource
41
  def load_or_create_vector_store(text_chunks):
42
+ embeddings = FAISS.get_default_embeddings()
 
 
 
43
  vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
 
44
  return vector_store
45
 
46
+ def generate_answer(user_question, context_text):
47
+ # Format the input message for the pipeline
48
+ messages = [
49
+ {"role": "user", "content": f"Context: {context_text}\nQuestion: {user_question}"}
50
+ ]
51
+ # Generate response using the pipeline
52
+ response = pipe(messages, max_length=250, do_sample=True)
53
+ return response[0]['generated_text'][:250] # Limit response to 250 characters
54
 
55
+ def user_input(user_question, vector_store):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  docs = vector_store.similarity_search(user_question)
57
+ context_text = " ".join([doc.page_content for doc in docs])
58
+ return generate_answer(user_question, context_text)
 
 
 
 
59
 
60
  def main():
61
+ st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="πŸ“„")
62
+ st.title("πŸ“„ Query PDF Documents on GitHub")
 
 
 
 
 
 
 
 
 
 
63
 
64
+ # Load documents from GitHub
65
+ raw_text = fetch_pdf_text_from_github(PDF_URLS)
66
+ text_chunks = get_text_chunks(raw_text)
67
+ vector_store = load_or_create_vector_store(text_chunks)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  # User question input
70
  user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
71
 
72
  if st.button("Get Response"):
 
73
  if not user_question:
74
  st.warning("Please enter a question before submitting.")
 
 
75
  else:
76
  with st.spinner("Generating response..."):
77
+ answer = user_input(user_question, vector_store)
78
+ st.markdown(f"**πŸ€– AI:** {answer}")
 
 
 
 
 
 
 
 
79
 
80
  if __name__ == "__main__":
81
+ main()