
Near-Optimal Dynamic Rounding of Fractional Matchings in
Bipartite Graphs∗

Sayan Bhattacharya
University of Warwick

UK

Peter Kiss
University of Warwick

UK

Aaron Sidford
Stanford University

USA

David Wajc
Technion — Israel Institute of Technology

Israel

ABSTRACT

We study dynamic (1 − n)-approximate rounding of fractional

matchings—a key ingredient in numerous breakthroughs in the

dynamic graph algorithms literature. Our �rst contribution is a

surprisingly simple deterministic rounding algorithm in bipartite

graphs with amortized update time$ (n−1 log2 (n−1 · =)), matching

an (unconditional) recourse lower bound of Ω(n−1) up to loga-

rithmic factors. Moreover, this algorithm’s update time improves

provided theminimum (non-zero) weight in the fractional matching

is lower bounded throughout. Combining this algorithm with novel

dynamic partial rounding algorithms to increase this minimum

weight, we obtain a number of algorithms that improve this depen-

dence on =. For example, we give a high-probability randomized

algorithm with $̃ (n−1 · (log log=)2)-update time against adaptive

adversaries.

Using our rounding algorithms, we also round known (1 − n)-
decremental fractional bipartite matching algorithms with no as-

ymptotic overhead, thus improving on state-of-the-art algorithms

for the decremental bipartite matching problem. Further, we pro-

vide extensions of our results to general graphs and to maintaining

almost-maximal matchings.

CCS CONCEPTS

• Theory of computation→ Dynamic graph algorithms.

KEYWORDS

Dynamic Matching, Dynamic Algorithms, Data Structures

ACM Reference Format:

Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-

Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs.

In Proceedings of the 56th Annual ACM Symposium on Theory of Computing

(STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3618260.3649648

∗Full version available at https://arxiv.org/abs/2306.11828 [25].

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0383-6/24/06
https://doi.org/10.1145/3618260.3649648

1 INTRODUCTION

Dynamic matching is one of the most central and well-studied dy-

namic algorithm problems. Here, a graph undergoes edge insertions

and deletions, and we wish to quickly update a large matching

(vertex-disjoint set of edges) following each such change to the

graph.

A cornerstone of numerous dynamic matching results is the

dynamic relax-and-round approach: the combination of dynamic

fractional matching algorithms [17–20, 26] with dynamic rounding

algorithms [3, 21, 24, 45, 55]. This dynamic fractional matching

problem asks to maintain a vector x ∈ R�≥0 such that G (E) :=∑
4∋E G4 satis�es the fractional degree constraint G (E) ≤ 1 for all

vertices E ∈ + and ∥x∥ :=
∑
4 G4 is large compared to the size

of the largest (fractional) matching in the dynamic graph � =

(+ , �). The goal typically is to solve this problem while minimizing

the amortized or worst-case time per edge update in � .1 For the

rounding problem (the focus of this work), an abstract interface

can be de�ned as follows.

De�nition 1.1. Adynamic rounding algorithm (for fractionalmatch-

ings) is a data structure supporting the following operations:

• init(� = (+ , �), x ∈ R�≥0, n ∈ (0, 1)): initializes the data
structure for undirected graph � with vertices + and edges �,

current fractional matching x in � , and target error n .

• update(4 ∈ �, a ∈ [0, 1]): sets G4 ← a under the promise that

the resulting x is a fractional matching in � .2

The algorithm must maintain a matching " in the support of x,

supp(x) := {4 ∈ � | G4 > 0}, such that" is a (1− n)-approximation

with respect to ∥x∥ := ∑
4 G4 , i.e.

" ⊆ supp(x) ," is a matching , and |" | ≥ (1 − n) · ∥x∥ .

The combination of fast fractional algorithms with fast dynamic

rounding algorithms plays a key role in state-of-the-art time / ap-

proximation trade-o�s for the dynamic matching problem against

an adaptive adversary [21, 45, 55], including the recent break-

throughs of [8, 24]. Here, a randomized algorithm works against

an adaptive adversary (or is adaptive, for short) if its guarantees

hold even when future updates depend on the algorithm’s previous

1An algorithm has amortized update time 5 (=) if every sequence of C updates takes
at most C · 5 (=) time and has worst-case update time 5 (=) if each operation takes at
most 5 (=) time. As we focus on amortized update times, we omit this distinction.
2Invoking update(4, 0) essentially deletes 4 and subsequently invoking update(4, a)
for a > 0 essentially adds 4 back. So,� might as well be the complete graph on + .
However, we �nd the notation� = (+ , �) convenient.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

59

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618260.3649648
https://arxiv.org/abs/2306.11828
https://doi.org/10.1145/3618260.3649648
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649648&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

output and its internal state. Slightly weaker are output-adaptive al-

gorithms, that allow updates to depend only on the algorithms’ out-

put. Note that deterministic algorithms are automatically adaptive.

A major motivation to study output-adaptive dynamic algorithms

is their black-box use as subroutines within other algorithms. (See

discussions in, e.g., [12, 34, 47].)

Despite signi�cant e�ort and success in designing and applying

dynamic rounding algorithms, the update time of current (1 − Y)-
approximate dynamic rounding approaches are slower by large

poly(Y−1, log=) factors than an unconditional recourse (changes

per update) lower bound ofΩ(n−1) (Fact 2.3).3 Consequently, round-
ing is a computational bottleneck for the running time of many

state-of-the-art dynamic matching algorithms [6, 8, 21, 24, 45, 55]

and decremental (only allowing deletions) matching algorithms

[14, 44].

The question thus arises, can one design (output-adaptive) optimal

dynamic rounding algorithms for fractional matching? We answer

this question in the a�rmative in a strong sense.

1.1 Our Contributions

Our main results are deterministic and randomized dynamic frac-

tional matching rounding algorithms for bipartite graphs thatmatch

the aforementioned simple recourse lower bound of Ω(Y−1) up to

logarithmic factors in Y and (sub-)logarithmic factors in = := |+ |.
These results are summarized by the following theorem.4

Theorem 1.2. The dynamic bipartite matching rounding problem

admits:

(1) A deterministic algorithm with $̃ (Y−1 log=) update time.

(2) An adaptive algorithm with $̃ (Y−1 · (log log=)2) update time

that is correct w.h.p.

(3) An output-adaptive algorithm with $̃ (Y−1) expected update
time.

The init(�, x, Y) time of each of these algorithms is$ (Y · |supp(x) |)
times its update time.

In contrast, prior approaches have update time at least Ω(Y−4)
(see Section 1.2). Moreover, all previous adaptive algorithms with

high probability (w.h.p.) or deterministic guarantees all have at

least (poly)logarithmic dependence on =, as opposed to our (sub-

)logarithmic dependence on =.

General Graphs. In general graphs, one cannot round all frac-

tional matchings (as de�ned) to integrality while only incurring a

(1− Y) factor loss in value.5 Nonetheless, it is known how to round

“structured” (1/2 − Y)-approximate dynamic fractional matchings

[20, 26] (see full version for more details) to obtain an integral

(1/2 − Y)-approximate matching [3, 21, 45, 55], and even almost

maximal matchings [24], as de�ned in [49] and restated below.

3Proving update time lower bounds for approximate dynamic matching is a notoriously
challenging open problem. On the other hand, [52] show that recourse can be made

$ (Y−1) for any approximate dynamic matching algorithm.
4Throughout, we use “soft-O” notation, $̃ , to suppress logarithmic factors in Y , i.e.,

$̃ (5) = $ (5 · poly(log(Y−1))) .
5Consider the triangle graph with fractional values G4 = 1/2 on all three edges; this
fractional matching has value 3/2, while any integral matching in a triangle has size
at most one. While adding additional constraints [37] avoids this issue, no dynamic
fractional algorithms for the matching polytope in general graphs are currently known.

De�nition 1.3. A matching" in� is an Y-almost maximal match-

ing (Y-AMM) if" is maximal with respect to some subgraph� [+ *]
obtained by removing at most |* | ≤ Y · ` (�) vertices from � , where

` (�) is the maximum matching size in � .

Such Y-AMM’s are (1/2 − Y)-approximate with respect to the

maximum matching [49]. Moreover, (almost) maximality of Y-AMM

makes their maintenance a useful algorithmic subroutine [6, 24,

49]. Extending our approach to rounding the aforementioned well-

structured, “near maximal” dynamic fractional matchings in general

graphs [20, 26], we obtain faster Y-AMM algorithms, as follows (see

the full version of the paper for formal statement).

Theorem 1.4. There exist dynamic algorithms maintaining Y-AMM

in general graphs in update time $̃ (Y−3)+$ (C5 +D5 ·CA), where C5 and
D5 are the update time and number of calls to update of any “struc-

tured” dynamic fractional matching algorithm, and CA is the update

time for “partial” rounding. Furthermore, there exist dynamic partial

rounding algorithms with the same update times and adaptivity as

those of Theorem 1.2.

1.1.1 Applications. Applying our rounding algorithms to known

fractional algorithms yields a number of new state-of-the-art dy-

namic matching results.

For example, by a black-box application of Theorem 1.2, we

deterministically round known decremental (fractional) bipartite

matching algorithms [14, 44] with no asymptotic overhead, yielding

faster (1 − Y)-approximate decremental bipartite matching algo-

rithms. We also discuss how a variant of Theorem 1.4 together with

the general-graph decremental algorithm of [5] leads to a conjec-

ture regarding the �rst deterministic sub-polynomial update time

(1 − Y)-approximate decremental matching algorithm in general

graphs.

Our main application is obtained by applying our rounding al-

gorithm for general graphs of Theorem 1.4 to the $ (Y−2)-time

fractional matching algorithm of [26], yielding the following.

Theorem 1.5. For any Y > 0, there exist dynamic Y-AMM algorithms

that are:

(1) Deterministic, using $̃ (Y−3 · log=) update time.

(2) Adaptive, using $̃ (Y−3 · (log log=)2) update time, correct

w.h.p.

(3) Output-adaptive, using $̃ (Y−3) expected update time.

In contrast, all prior non-oblivious (1/2− Y)-approximate match-

ing algorithms had at least quartic dependence on Y, which the

above result improves to cubic. Moreover, this result yields the

�rst deterministic $ (log=)-time and adaptive > (log=)-time high-

probability algorithms for this widely-studied approximation range

and for near-maximal matchings. This nearly concludes a long line

of work on deterministic/adaptive dynamic matching algorithms

for the (1/2 − Y) approximation regime [9, 18, 19, 21, 24, 26, 45, 55].

1.2 Our Approach in a Nutshell

Here we outline our approach, focusing on the key ideas behind

Theorem 1.2. To better contrast our techniques with those of prior

work, we start by brie�y overviewing the latter.

60

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Previous approaches. Prior dynamic rounding algorithms [3, 21,

45, 55] all broadly work by partially rounding the fractional match-

ing x to obtain a matching sparsi�er ((a sparse subgraph approx-

imately preserving the fractional matching size compared to x).

Then, they periodically compute a (1 − Y)-approximate matching

in this sparsi�er (using a static $̃ (|(| · Y−1)-time algorithm (e.g.,

[36]) whenever ∥x∥ changes by Y · ∥x∥, i.e., every Ω(Y · ∥x∥) updates.
This period length guarantees that the matching computed remains

a good approximation of the current fractional matching during

the period, with as good an approximation ratio as the sparsi�er

(. Now, for sparsi�er (to be $ (1)-approximate, it must have size

|(| = Ω(∥x∥), and so this approach results in an update time of

at least Ω(Y−2). Known dynamic partial rounding approaches all

result in even larger sparsi�ers, resulting in large poly(Y−1, log=)
update times.

Direct to integrality. Our �rst rounding algorithm for bipartite

graphs breaks from this framework and directly rounds to inte-

grality. This avoids overhead of periodic recomputation of static

near-maximum matching algorithms, necessary to avoid super-

linear-in-Y−1 update time (or => (1) factors, if we substitute the

static approximate algorithms with the breakthrough near-linear-

time max-�ow algorithm of [33]). The key idea is that, by encoding

each edge’s weight in binary, we can round the fractional matching

“bit-by-bit”, deciding for each edge whether to round a component

of value 2−8 to a component of value 2−8+1. This can be done stati-

cally in near-linear-time by variants of standard degree splitting

algorithms, decreasing the degree of each node in a multigraph by

a factor of two (see Theorem 2). Letting ! := log((min4 :G4≠0 G4)−1),
we show that by bu�ering updates of total value at most$ (Y ·∥x∥/!)
for each power of 2, we can e�ciently dynamize this approach, ob-

taining a dynamic rounding algorithm with update time $̃ (Y−1 ·!2).
As we can assume that min4 :G4≠0 G4 ≥ Y/=2 (Observation 2.2), this

gives our bipartite $̃ (Y−1 · log2 =) time algorithm.

Faster partial rounding. The second ingredient needed for Theo-

rem 1.2 are a number of algorithms for “partially rounding” frac-

tional matchings, increasing min4 :G4≠0 G4 while approximately pre-

serving the value of the fractional matching. (The output is not

quite a fractional matching, but in a sense is close to one. See De�-

nition 4.1.) Our partial rounding algorithms draw on a number of

techniques, including fast algorithms for partitioning a fractional

matching’s support into multiple sparsi�ers, as opposed to a single

such sparsi�er in prior work, and a new output-adaptive sampling

data structure of possible independent interest (Section A).6,7 Com-

bining these partial rounding algorithms with our simple algorithm

underlies all our bipartite rounding results of Theorem 1.2, as well

as our general graph rounding results (which are deferred to the

full version of the paper).

1.3 Related Work

The dynamic matching literature is vast, and so we only brie�y

discuss it here. For a more detailed discussion, see, e.g., the recent

papers [4, 8, 22, 24].

6From this we derive the �rst output-adaptive matching algorithm that is not also
adaptive.
7Concurrently to our work, another such sampling algorithm was devised [56]. See
discussion in Section A.

The dynamic matching problem has been intensely studied since

a seminal paper of Onak and Rubinfeld [48], which showed how

to maintain a constant-approximate matching in polylogarithmic

time. Results followed in quick succession, including conditional

polynomial update time lower bounds for exact maximummatching

size [1, 2, 35, 42, 46], and numerous algorithmic results, broadly

characterized into two categories: polynomial time/approximation

tradeo�s [4, 8, 10, 11, 15, 16, 21, 22, 28, 39, 40, 43, 45, 49, 50, 55], and

1/2− or (1/2 − Y)-approximate algorithms with polylogarithmic or

even constant update time [3, 7, 9, 13, 19, 21, 26, 31, 32, 45, 53, 55].8

We improve the state-of-the-art update times for all deterministic

and adaptive algorithms in the intensely-studied second category.

The (1 − Y)-approximate matching problem has also been stud-

ied in partially dynamic settings. This includes a recent algorithm

supporting vertex updates on opposite sides of a bipartite graph,

though not edge updates [57] (see arXiv). For incremental (edge-

insertion-only) settings several algorithms are known [23, 27, 38,

41], the fastest having poly(Y−1) update time [27]. In decremen-

tal settings (edge-deletion-only), rounding-based algorithms with

poly(Y−1, log=) update time in bipartite graphs [14, 23, 44] and

randomized exp(Y−1) in general graphs [5] are known. We improve

on these decremental results, speeding up bipartite matching, and

giving the �rst deterministic logarithmic-time algorithm for general

graphs.

1.4 Paper Outline

Following some preliminaries in Section 2, we provide our �rst

simple bipartite rounding algorithm in Section 3. In the full version

of the paper we introduce the notion of partial roundings that

we study and show how such partial rounding algorithms can

be combined with our simple algorithm to obtain the (bipartite)

rounding algorithms of Theorem 1.2.

2 PRELIMINARIES

Assumptions and Model. Throughout, we assume that ∥x∥ ≥ 1,

as otherwise it is trivial to round ∥x∥ within a factor of 1 − Y, by
maintaining a pointer to any edge in supp(x) whenever the latter
is not empty. In this paper we work in the word RAM model of

computation with words of sizeF := Θ(log=), allowing us to index
any of 2$ (F) = poly(=) memory addresses, perform arithmetic on

F-bit words, and drawF-bit random variables, all in constant time.

We will perform all above operations on $ (log(Y−1 · =))-bit words,
which is still$ (F) provided Y−1 = poly(=). If Y is much smaller, all

stated running times trivially increase by a factor of $ (log(Y−1)).

Notation. Formultisets (1 and (2, we denote by (1⊎(2 the “union”
multiset, in which each element has multiplicity that is the sum of

its multiplicities in (1 and (2. A vector x is _-uniform if G4 = _ for

all 4 ∈ supp(x), and is uniform if it is _-uniform for some _. Given

fractional matching x, we call an integral matching" ⊆ supp(x)
that is (1−Y)-approximate, i.e., |" | ≥ ∥x∥ · (1−Y) an Y-approximate

rounding of x. Finally, we use the following notion of distance and

its monotonicity.

Observation 2.1. For vectors x, y ∈ R� and Y ≥ 0, de�ne3n
+
(x, y) :=∑

E∈+ (|G (E) − ~ (E) | − n)+, for (I)+ := max(0, I) the positive part of
8Some works study approximation of maximum matching size [6, 8, 22, 24, 28, 51].

61

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

I ∈ R. Then, we have 3Y
+
(x, y) ≤ 3Y

′
+
(x, y) for all n ≥ n′. Moreover,

by the triangle inequality and the basic fact that (0 + 1)+ ≤ 0+ + 1+
for all real 0, 1, we have 3Y1+Y2

+
(x, z) ≤ 3

Y1
+
(x, y) + 3Y2

+
(y, z) for all

Y1, n2 ≥ 0 and vectors x, y, z ∈ R� .
Support and Binary encoding. We denote the binary encoding of

each edge 4’s fractional value by G4 :=
∑
8 (G4)8 · 2−8 . We further

let supp8 (x) := {4 ∈ � | (G4)8 = 1} denote the set of coordinates
of x whose 8-th bit is a 1. So, supp(x) = ⋃

8 supp8 (x). Next, we
let xmin := min4∈supp(x) G4 . The following observation allows us

to restrict our attention to a small number of bits when rounding

bipartite fractional matchings x. (In the full version we extend

this observation to the structured fractional matchings in general

graphs that interest us there.)

Observation 2.2. For rounding bipartite fractional matching, by

decreasing Y by a constant factor, it is without loss of generality that

xmin ≥ Y/=2 and moreover if Δ ≤ xmin and ! := 1 + ⌈log(Y−1Δ−1)⌉,
we may safely assume that (G4)8 = 0 for all 8 > !.

Proof. Let Y′ = Y/3. Consider the vector x′ obtained by zeroing

out all entries 4 of x with G4 < Y′/=2 and setting (G4)8 = 0 for all

edges 4 and indices 8 > !. Clearly, supp(x′) ⊆ supp(x) and x′ is a
fractional matching, as x′ ≤ x. The following shows that ∥x′∥ is
not much smaller than ∥x∥ ≥ 1.

∥x′∥ ≥ ∥x∥ −
(
=

2

)
Y′

=2
−
∑

4

∑

8>!

2−8

≥ ∥x∥ − Y′ −
∑

4

Y′ · xmin

≥ ∥x∥ · (1 − Y′) −
∑

4

Y′ · G4

= (1 − 2Y′) · ∥x∥.
Therefore, a matching " ⊆ supp(x′) ⊆ supp(x) that is (1 − Y′)-
approximate w.r.t. G ′ is (1 − Y)-approximate w.r.t. x, as |" | ≥ (1 −
Y′) · ∥x′∥ ≥ (1 − 3Y′) · ∥x∥ = (1 − Y) · ∥x∥. □

Recourse Lower Bound. We note that the number of changes to

" per update (a.k.a. the rounding algorithm’s recourse) is at least

Ω(Y−1) in the worst case.

Fact 2.3. Any (1 − Y)-approximate dynamic matching rounding

algorithm A must use Ω(Y−1) amortized recourse, even in bipartite

graphs.

Proof. Consider a path graph � of odd length 4Y−1 + 2 with

values 1/2 assigned to each edge. A matching" ⊆ supp(x) of size
|" | ≥ (1 − Y) · ∥x∥ must match all odd-indexed edges of the path.

However, after invoking update(·, 0) for the �rst and last edges in

the path, for |" | ≥ (1 − Y) · ∥x∥ (for the new x)," must match all

even-indexed edges. Therefore, repeatedly invoking update(·, 0)
and then update(·, 1/2) for these two edges su�ciently many times

implies that the matching" maintained by A must change by an

average of Ω(Y−1) edges per update. □

2.1 The Degree-Split subroutine

Throughout the paper, we use the following subroutine to partition

a graph into two subgraphs of roughly equal sizes while roughly

halving all vertices’ degrees. Such subroutines obtained by e.g.,

computing maximal walks and partitioning them into odd/indexed

edges, have appeared in the literature before in various places. For

completeness, we provide this algorithm in the full version.

Proposition 2.4. There exists an algorithm degree-split, which on

multigraph � = (+ , �) with maximum edge multiplicity at most two

(i.e., no edge has more than two copies) computes in $ (|� |) time two

(simple) edge-sets �1 and �2 of two disjoint sub-graphs of� , such that

�1, �2 and the degrees 3� (E) and 38 (E) of E in � and �8 := (+ , �8)
satisfy the following.

(1) (P1)|�1 | = ⌈ |� |2 ⌉ and |�2 | = ⌊
|� |
2 ⌋.

(2) (P2) 38 (E) ∈
[
3� (E)

2 − 1, 3� (E)
2 + 1

]
for each vertex E ∈ +

and 8 ∈ {1, 2}.
(3) (p3) 38 (E) ∈

[
⌊3� (E)2 ⌋, ⌈3� (E)2 ⌉

]
for each vertex E ∈ + and

8 ∈ {1, 2} if � is bipartite.

3 SIMPLE ROUNDING FOR BIPARTITE

MATCHINGS

In this section we use the binary encoding of x to approximately

round fractional bipartite matchings in a “linear” manner, rounding

from the least-signi�cant to most-signi�cant bit of the encoding.

We �rst illustrate this approach in a static setting in Section 3.1. This

will serve as a warm-up for our �rst dynamic rounding algorithm

provided in Section 3.2, which is essentially a dynamic variant of

the static algorithm (with its init procedure being essentially the

static algorithm).

3.1 Warm-up: Static Bipartite Rounding

In this section, we provide a simple static bipartite rounding algo-

rithm for fractional matchings.

Speci�cally, we prove the following Theorem 3.1, analyzing

our rounding algorithm, Algorithm 1. The algorithm simply con-

siders for all 8 , �8 := supp8 (G), i.e., the edges whose 8-th bit is

set to one in x. Starting from �! = ∅, for 8 = !, . . . , 1, the algo-

rithm applies degree-split to the multigraph � [�8 ⊎ �8] and sets

�8−1 to be the �rst edge-set output by degree-split (by induc-

tion, �8 , �8 are simple sets, and so � [�8 ⊎ �8] has maximum mul-

tiplicity two.) Overloading notation slightly, we denote this by

�8−1 ← degree-split(� [�8 ⊎ �8]). The algorithm then outputs

�0 ∪ �0.

Algorithm 1: Hierarchical Fractional Rounding Algorithm

input :Fractional matching x ∈ R�≥0 in graph � = (+ , �)
input :Accuracy parameter n ∈ (0, 1)
output : Integral matching" ⊆ supp(x) with

|" | ≥ (1 − n) · ∥x∥
! ← 1 + ⌈log2 (Y−1G−1min

)⌉ and �! ← ∅;
for 8 = !, ! − 1, . . . , 1 do

�8 ← supp8 (x);
�8−1 ← degree-split(� [�8 ⊎ �8]) ; // First set

output by degree-split

end

return" ← �0 ∪ �0;

62

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Theorem 3.1. On fractional bipartite matching x and error parame-

ter n ∈ (0, 1),Algorithm 1 outputs an integral matching" ⊆ supp(x)
with |" | ≥ (1 − n) · ∥x∥ in time $ (|supp(x) | · log(Y−1x−1

min
)).

By Observation 2.2, ! = $ (log(Y−1 · =)), and so Theorem 3.1

implies an$ (|supp(x) | · log(Y−1 · =)) runtime for Algorithm 1. We

prove this theorem in several steps. Key to our analysis is the fol-

lowing sequence of vectors (which we will soon show are fractional

matchings if supp(x) is bipartite).

De�nition 3.2. Letting �8 (4) := 1[4 ∈ �8] and �8 (4) := 1[4 ∈
�8] = (G4)8 , we de�ne a sequence of vectors x(8) ∈ R�≥0 for 8 =

0, 1, . . . , ! as follows.

G
(8)
4 := �8 (4) · 2−8 +

8∑

9=0

� 9 (4) · 2− 9 . (1)

So, ∥x(!) ∥ ≥ (1−Y)·∥x∥, by de�nition andObservation 2.2. More-

over, each (copy of) edge 4 output/discarded by degree-split(� [�8⊎
�8]) corresponds to adding/subtracting 2−8 to/from G

(8)
4 to obtain

G
(8−1)
4 . This allows us to prove the following lower bound on the

size of the output.

Lemma 3.3. ∥x(8) ∥ ≥ (1 − Y) · ∥x∥ for all 8 ∈ {0, 1, . . . , !}.

Proof. By Property 1 we have that |�8−1 | ≥ ⌈ 12 (|�8 | + |�8 |)⌉ and
so

∥x(8−1) ∥ = ∥x(8) ∥ + 21−8 ·
∑

4

�8−1 (4)

−
∑

4

2−8 · (�8 (4) + �8 (4)) ≥ ∥x(8) ∥.

Therefore, repeatedly invoking the above bound and appealing to

Observation 2.2, we have that indeed, for all 8 ∈ {0, 1, . . . , !},

∥x(8) ∥ ≥ ∥x(8+1) ∥ ≥ · · · ≥ ∥x(!) ∥ ≥ (1 − Y) · ∥x∥. □

A simple proof by induction shows that if supp(x) is bipartite,
then the above procedure preserves all vertices’ fractional degree

constraints, i.e., the vectors x(8) are all fractional matchings.

Lemma 3.4. If x is a fractional bipartite matching then G (8) (E) ≤ 1

for every vertex E ∈ + and 8 ∈ {0, 1, . . . , !}.

Proof. By reverse induction on 8 ≤ !. The base case holds

since x(!) ≤ x is a fractional matching. To prove the inductive

step for 8 − 1 assuming the inductive hypothesis G (8) (E) ≤ 1, let

3�8
(E) = ∑

4∈E (�8 (4) + �8 (4)) be the number of (possibly parallel)

edges incident to E in �8 := � [�8 ⊎ �8]. By Property 3, we have the

following upper bound on E ’s fractional degree under x(8−1) .

G (8−1) (E) ≤ G (8) (E) − 3�8
(E) · 2−8 +

⌈
3�8
(E)
2

⌉
· 2−8+1 . (2)

If 3�8
(E) is even, then we are done, by the inductive hypothesis

giving G (8−1) (E) ≤ G (8) (E) ≤ 1. Suppose therefore that 3�8
(E) is

odd. By De�nition 1, any value G
(8)
4 is evenly divisible by 2−8 and

therefore the same holds for G (8) (E). By the same token, 3�8
(E) is

odd if and only if G (8) (E) is not evenly divisible by 2−8+1. However,
since G (8) (E) is evenly divisible by 2−8 and it is at most one, this

implies that G (8) (E) ≤ 1 − 2−8 . Combined with Equation 2, we

obtain the desired inequality when 3�8
(E) is odd as well, since

G (8−1) (E) ≤ G (8) (E) + 2−8 ≤ 1 − 2−8 + 2−8 = 1. □

Now, since the vector x(0) is integral, the preceding lemmas

imply that if x is a bipartite fractional matching then" is a large

integral matching.

Lemma 3.5. If x is a fractional bipartite matching then" = �0 ∪
�0 ⊆ supp(x) is an integral matching of cardinality at least |" | =
|�0 | + |�0 | ≥ (1 − Y) · ∥x∥.

Proof. By Lemma 3.4, the (binary) vector x(0) (the character-
istic vector of ") is a feasible fractional matching, and so " is

indeed a matching. That" ⊆ supp(x) follows from degree-split

outputting a sub(multi)set of the edges of its input, and therefore

a simple proof by induction proves that supp(x) ⊇ supp(x(!)) ⊇
supp(x(!−1)) ⊇ · · · ⊇ supp(x(0)) = " . The lower bound on

|" | = ∥G (0) ∥ then follows from Lemma 3.3. □

Finally, we bound the algorithm’s running time.

Lemma 3.6. Algorithm 1 takes time $ (|supp(x) | · !) when run on

vector x ∈ R�≥0.

Proof. To analyze the runtime of the algorithm, note that it runs

in time$ (! +∑!
8=0 (|�8 | + |�8 |)). Further, |�! | = 0 and by Property 1

we have that |�8 | ≤ 1
2 |�8+1 | +

1
2 |�8+1 | + 1 for all 8 ∈ {0, 1, . . . , ! − 1}.

Letting< := |supp(x) | we know that |�8 | ≤ < for all 8 , and so by

induction

|�8 | ≤
1

2
|�8+1 | +

1

2
< + 1 ≤ < + 2 for all 9 ∈ {0, 1, ..., ! − 1}.

Thus, the algorithm runs in the desired time of$ (<!+!) = $ (<!).
□

Theorem 3.1 follows by combining the two preceding lemmas.

We now turn to the dynamic counterpart of Algorithm 1.

3.2 A Simple Dynamic Bipartite Rounding

Algorithm

In this sectionwe dynamize the precedingwarm-up static algorithm,

obtaining the following result.

Theorem 3.7. Algorithm 2 is a deterministic dynamic bipartite

matching rounding algorithm. Under the promise that the dynamic in-

put vector x satis�es xmin ≥ X throughout, its amortized update time

is$ (Y−1 ·log2 (Y−1X−1)) and its init time on vector x is$ (|supp(x) |·
log(Y−1X−1)).

Since X ≥ Y/=2 by Observation 2.2, Theorem 3.7 yields an $̃ (Y−1 ·
log2 =) update time algorithm.

Our dynamic algorithm follows the preceding static approach.

For example, its initialization is precisely the static Algorithm 1

(and so the init time follows from Theorem 3.1). In particular, the

algorithm considers a sequence of graphs �8 := � [�8 ⊎ �8] and
fractional matchings x(8) de�ned by �8 and the 8 most signi�cant

bits of G4 , as in De�nition 1. However, to allow for low (amor-

tized) update time we allow for a small number of unprocessed

changed or deleted edges for each 8 , denoted by 28 . When such a

63

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

number 28 becomes large, we rebuild the solution de�ned by �8
and supp8 (x), . . . , supp0 (x) as in the static algorithm. Formally, our

algorithm is given in Algorithm 2.

Algorithm 2: Hierarchical Dynamic Fractional Rounding

Algorithm

global :Current vector x

global :Current output integral matching"

global :Accuracy n and maximum layer ! ∈ Z>0
global :Partial roundings �0, �1, . . . , �! ⊆ � and update

counts 20, 21, . . . , 2! ∈ Z≥0
// In init we assume that the algorithm knows X,

a lower bound on xmin for all nonzero x

encountered after an operation

function init(� = (+ , �), x ∈ R�≥0, n ∈ (0, 1))
Save x and n as global variables;

Initialize ! ← 1 + ⌈log2 (Y−1X−1)⌉, 28 ← 0, and �8 ← ∅,
for all 8 ∈ {0, 1, . . . , !};

Call rebuild(!);
function rebuild(8)

for 9 = 8, 8 − 1, . . . , 0 do
� 9 ← supp9 (x) and 2 9 ← 0;

if 9 ≠ 0 then � 9−1 ← degree-split(� [� 9 ⊎ � 9]);
end

" ← �0 ∪ �0;
function update(4, a)

x4 ← a ;

for 8 = !, ! − 1, ..., 0 do
if 4 ∈ �8 then remove 4 from �8 ;

if 8 ≠ 0 then

if 4 ∈ �8−1 then remove 4 from �8−1;
else remove one edge adjacent to each endpoint

of 4 from �8−1 (if there is one);
end

28 ← 28 + 1;
if 28 > 28−2 · Y ∥x∥! then call rebuild(8) and return;

end

Conventions and notation.Most of our lemmas concerning Al-

gorithm 2 hold for arbitrary non-negative vectors x ∈ R�≥0, a fact
that will prove useful in later sections. We state explicitly which

lemmas hold if x is a fractional bipartite matching. In the analysis

of Algorithm 2 we let x(8) be as de�ned in De�nition 1, but with �8
and �8 of the dynamic algorithm. Furthermore, we prove all struc-

tural properties of Algorithm 2 for any time after init and any

number of update operations, and so we avoid stating this in all

these lemmas’ statements for brevity. Next, we use the shorthand

(8 := supp8 (x), and note that unlike in the static algorithm, due

to deletions from �8 before the next rebuild(8), the containment

�8 ⊆ (8 may be strict.

First, we prove that" is a matching if x is a bipartite fractional

matching. More generally, we prove that each x(8) , and in particular
x(0) , is a fractional matching, implying the above.

Lemma 3.8. If x is a fractional bipartite matching, then x(8) is a
fractional matching for all 8 ∈ {0, 1, . . . , !}.

Proof. Fix vertex E , and let �8 (E) and (8 (E) be the number of

edges of E in �8 and (8 respectively, for all 8 ∈ {0, 1, . . . , !}. To upper
bound G (8) (E), we start by upper bounding �8 (E), as follows.

�8 (E) ≤

28 ·

!∑

9=8+1
(9 (E) · 2− 9


. (3)

We prove the above by induction on the number of operations and

by reverse induction on 8 ∈ {0, 1, . . . , !}, as follows. The base case
8 = ! is trivial, as �! (E) = 0 throughout and the RHS is non-negative.

Next, for 8 < !, consider the e�ect on �8 (E) of an update resulting

in a call to rebuild(8 + 1) (e.g., after calling init), at which point

�8+1 ← (8+1.

�8 (E) ≤
⌈
1

2
· ((8+1 (E) + �8+1 (E))

⌉
Property 3

≤


1

2
· (8+1 (E) +

1

2
·

28+1 ·

!∑

9=8+2
(9 (E) · 2− 9




Inductive hypothesis for 8 + 1

≤


1

2
· (8+1 (E) +

1

2
· 28+1 ·

!∑

9=8+2
(9 (E) · 2− 9



=


28 ·

!∑

9=8+1
(9 (E) · 2− 9


,

where the last inequality follows from the basic fact that for non-

negative ~, I with ~ an integer, ⌈ 12 · ~ +
1
2 ⌈I⌉⌉ ≤ ⌈

1
2 (~ + I)⌉. Next,

it remains to prove the inductive step for index 8 and a call to

update for which rebuild(8 + 1) is not called: but such an update

only decreases the left-hand side of Equation 3, while it causes a

decrease in the right-hand side (by one) only if an edge of E was

updated in this call to update, in which case we delete at least one

edge incident to E in �8 , if any exist, and so the left-hand side also

decreases by one (or is already zero).

Finally, combining De�nition 1 and Equation 3, we obtain the

desired inequality G (8) (E) ≤ 1.

G (8) (E) ≤ �8 (E) · 2−8 +
8∑

9=0

(9 (E) · 2− 9

≤ 2−8 ·

28 ·

!∑

9=8+1
(9 (E) · 2− 9


+

8∑

9=0

(9 (E) · 2− 9 ≤ 1.

Above, the �rst inequality follows from De�nition 1 and �8 (E) ≤
(8 (E) since �8 ⊆ (8 . The second inequality follows from Equation 3.

Finally, the �nal inequality relies on
∑

9 (9 (E) · 2− 9 = G (E) ≤ 1,

together with 28 ·∑!
9=8+1 (9 (E) · 2− 9 being fractional if and only if

∑!
9=8+1 (9 (E) · 2− 9 is not evenly divisible by 2−8 , though it is evenly

divisible by 2−8−1, in which case G (E) ≤ 1 − 2−8 . □

64

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Remark 3.9. The same proof approach, using Property 1 of Degree-

Split (for possibly non-bipartite graphs) implies the global upper bound

|�8 | ≤
⌈
28 ·∑!

9=8+1 |(9 | · 2− 9
⌉
≤ 1 + 28 · ∥x∥.

Next, we prove the second property of a rounding algorithm,

namely that" ⊆ supp(x).

Lemma 3.10. supp(x(8)) ⊆ supp(x) for all 8 ∈ {0, 1 . . . , !} and
therefore" ⊆ supp(x).

Proof. We prove the stronger claim by induction on the num-

ber of operations of Algorithm 2 and by reverse induction on 8 ∈
{0, 1, . . . , !} that supp(x(8)) = �8 ∪ �8 ⊆ supp(x(8+1)) ⊆ supp(x).
That �8 ⊆ supp8 (x) throughout is immediate, since �8 ← supp8 (x)
when rebuild(8) is called (and in particular after init was called),

and subsequently all edges 4 ∈ �8 that are updated (and in particu-

lar each edge whose G4 value is set to zero) are removed from �8 .

Therefore �8 ⊆ supp(x) throughout, and in particular supp(x(!)) =
�! ⊆ supp(x). Similarly, by the properties of degree-split and

the inductive hypothesis, we have that after rebuild(8) is called,
�8 ⊆ �8+1 ∪ �8+1 ⊆ supp(x(8+1)) ⊆ supp(x), and each edge 4

updated since is subsequently deleted from �8 (as are some addi-

tional edges). Therefore �8 ⊆ supp(x) throughout. We conclude

that supp(x(8)) ⊆ supp(x) for all 8 , as desired. □

We now argue that the unprocessed edges have a negligible

e�ect on values of x(8) compared to their counterparts obtained by

running the static algorithm on the entire input x.

Lemma 3.11. ∥x(8) ∥ ≥ (1 − 2Y) · ∥x∥ for every 8 ∈ {0, 1, . . . , !}.

Proof. As in the proof of Lemma 3.3, by Property 1, after init

or any update(·, ·) triggering a call to rebuild(8) we have that

|�8−1 | = ⌈ 12 (|�8 | + |�8 |)⌉, and so ∥x(8−1) ∥ ≥ ∥x(8) ∥. On the other

hand, between calls to rebuild(8) there are at most 28−2 · Y ∥x∥! calls

to update(4, a), resulting in at most 28−1 · Y ∥x∥! many edges being

deleted from �8−1, which in turn result in ∥x(8−1) ∥ decreasing by at
most 2−(8−1) · 28−1 · Y ∥x∥! =

Y ∥x∥
! . In contrast, by De�nition 1, any

changes in � 9 for 9 ≠ 8 have no e�ect on ∥x(8−1) ∥ − ∥x(8) ∥. On the

other hand, until the next rebuild(8) is triggered, we have that �8
and �8 can only decrease (contributing to an increase in ∥G (8−1) ∥ −
∥G (8) ∥); �8 can only decrease since edges are only added to �8 when

rebuild(8) is called, and �8 only decreases until rebuild(8 + 1) is
called, which triggers a call to rebuild(8). Therefore, ∥G (8−1) ∥ −
∥G (8) ∥ decreases by at most

Y ∥x∥
! during updates until the next

call to rebuild(8), and so after init and after every update of

Algorithm 2, we have that

∥x(8−1) ∥ ≥ ∥x(8) ∥ − Y∥x∥
!

.

Invoking the above inequality ! times, and using that ∥x(!) ∥ ≥
(1 − Y) · ∥x∥ by Observation 2.2, we obtain the desired inequality.

|�0 ∪ �0 | = ∥x(0) ∥ ≥ ∥x(1) ∥ −
Y∥x∥
!
≥ . . .

≥ ∥x(!) ∥ − ! · Y∥x∥
!
≥ (1 − 2Y) · ∥x∥ . □

Remark 3.12. The latter is nearly tight, as ∥x(8) ∥ ≤ (1 + n) · ∥x∥ +
21−8 for every 8 ∈ {0, 1, . . . , !}.

Proof (Sketch). The proof follows that of Lemma 3.11, with

the following changes: By Property Property 1, after init or any

update(·, ·) triggering a call to rebuild(8) we have the upper

bound |�8−1 | = ⌈ 12 ≤ 1 + 1
2 (|�8 | + |�8 |), and so ∥x(8−1) ∥ ≤ ∥x(8) ∥ +

2−8+1. On the other hand, the increase in ∥G (8−1) ∥ − ∥G (8) ∥ until
such a rebuild(8) is at most

n ∥x∥
! (similarly to the decrease in the

same). The proof then concludes similarly to that of Lemma 3.11,

also using that ∥x(!) ∥ ≤ ∥x∥. □

Finally, we turn to analyzing the algorithm’s update time.

Lemma 3.13. The (amortized) time per update of Algorithm 2 is

$ (Y−1 · !2) .

Proof. By Remark 3.9, |�8 | ≤ 1+28 · ∥x∥ = $ (28 · ∥x∥) (recalling
that without loss of generality ∥x∥ ≥ 1). Similarly, trivially |(8 | =
28 · 2−8 · |(8 | ≤ 28 · ∥x∥. Therefore, by Proposition 2.4, the calls to

degree-split(� [�8 ⊎ �8]) in Algorithm 2 (at which point �8 = (8)

take time$ (28 · ∥x∥), and so the time for rebuild(8) is∑8
9=0$ (29 ·

∥x∥) = $ (28 · ∥x∥). But since rebuild(8) is called after 28−2 · Y ∥x∥!
updates, its cost amortizes to$ (Y−1 · !) time per update. Summing

over all 8 ∈ {0, 1, . . . , !}, we �nd that indeed, the amortized time

per update operation, which is $ (!) (due to deleting $ (1) edges
from each �8 and �8 for each 8) plus its contribution to periodic calls

to rebuild, is $ (Y−1 · !2). □

We are �nally ready to prove Theorem 3.7.

Proof of Theorem 3.7. Algorithm 2 is a dynamic rounding al-

gorithm for bipartite fractional matchings, since " is a match-

ing contained in supp(x0) ⊆ supp(x1) ⊆ · · · ⊆ supp(x) if the
latter is bipartite, by Lemma 3.8 and Lemma 3.10, and moreover

|" | = ∥x(0) ∥ ≥ (1 − 2Y) · ∥x∥, by Lemma 3.11. The algorithm’s

update time and init time follow from Lemma 3.13 and Theo-

rem 3.1. □

To (nearly) conclude, this section provides a simple bipartite

rounding algorithm with near-optimal Y-dependence. In the follow-

ing section we show how partially rounding the fractional matching

allows to dynamically guarantee that xmin be sub-polynomial in

Y/=, thus allowing us to decrease ! and obtain speedups (improved

=-dependence) when combined with Algorithm 2.

Algorithm 2 in general graphs. Before continuing to the next

section, we mention that the alluded-to notion of partial round-

ing will also be useful when rounding (well-structured) fractional

matchings in general graphs as well (see full version). With this in

mind, we provide the following lemma, which is useful to analyze

Algorithm 2 when rounding general graph matchings.

Lemma 3.14. For 32
+
(x, y) := ∑

E∈+ (|G (E) −~ (E) | −2)+, the vectors
x(8) satisfy

32
−8+1

+ (x, x(8)) ≤ Y · ∥x∥ ∀8 ∈ {0, 1, . . . , !}.

Proof. First, we verify that the inequality holds (with some

extra slack) right after rebuild(8) (and in particular right after

65

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

init). First, by Property 2 of degree-split, during the invocation

of which �8 = (8 , we have that

�8 (E) ∈
[
1

2
(�8+1 (E) + �8+1 (E) − 1,

1

2
(�8+1 (E) + �8+1 (E)) + 1

]

. Therefore, byDe�nition 1, for each vertex E , we have after rebuild(8)
that

|G (8) (E) − G (8+1) (E) | ≤ 2−8 .

On the other hand, before an update with current input x there are

at most 28−2 · Y ∥x∥! calls to update since the last call to rebuild(8),
resulting in at most 3 · 28−2 · Y ∥x∥! many edges being added or

deleted from �8 ∪ �8 . Therefore, during the updates between calls

to rebuild(8), the total variation distance between x(8) and x(8+1)

changes by at most
Y ∥x∥
! , and so after init and after any update,

∑

E

(
|G (8) (E) − G (8+1) (E) | − 2−8

)+
≤ Y∥x∥

!
.

Now, using the basic fact that (0 + 1)+ ≤ 0+ + 1+ for all real 0, 1,
summing the above di�erence over all 8 , and using that x = x(!)

by Observation 2.2, we obtain the desired inequality, as follows.
∑

E

(
|G (8) (E) − G! (E) | − 2−8+1

)+
≤

!−1∑

9=8

∑

E

(
|G (8) (E) − G (8+1) (E) | − 2−8

)+

≤ ! · Y∥x∥
!

= Y∥x∥ . □

4 PARTIAL ROUNDING: A PATH TO

SPEEDUPS

So far, we have provided a rounding algorithm with near-optimal

dependence on Y (by Fact 2.3) and polylogarithmic dependence

on x−1
min

= poly(Y−1=) of the fractional matching x. To speed up

our algorithm we thus wish to dynamically maintain a “coarser”

fractional matching x′ (i.e., with larger (x′
min
)−1 than x−1

min
) that

approximately preserves the value of x. The following de�nition

captures this notion of coarser fractional matchings that we will

use.9

De�nition 4.1. A vector x′ ∈ R�≥0 is an (n, X)-coarsening of a

vector x ∈ R�≥0 if:
(0) (P1)Containment: supp(x′) ⊆ supp(x).
(1) (P2)Global Slack: | ∥x∥ − ∥x′∥| ≤ Y · ∥x∥ + Y.
(2) (P3)Vertex Slack: 3n

+
(x, x′) ≤ Y · ∥x∥ + Y.

(3) (P4)Edge Values: G ′4 ∈ {0} ∪ [X, 2X) if G4 < X and G ′4 = G4
otherwise.

The coarsening x′ is bounded if it also satis�es:

(1) (P4)Boundedness: G ′ (E) ≤ G (E) + Y for all E ∈ + .

We brie�y motivate the above de�nition: As we shall see, prop-

erties 1 and 2 imply that x′ (after mild post-processing) is a (1 − Y)-
approximation of x, and so rounding x′ ≤ x results in a (1 − Y)2 ≥
(1−2Y)-approximation of x. The less immediately intuitive Property

2 will also prove useful when rounding in general graphs. For now,

9In what follows, we use the de�nition of 3n
+

from Observation 2.1.

we will use this property when combining coarsenings of disjoint

parts of the support of x. Property 3 then allows us to round such

coarsening x′ e�ciently, with only a polylogarithmic dependence

on X−1, using Algorithm 2 (by Theorem 3.7). Finally, Property 1

guarantees that x′/(1 + Y) is a fractional matching.

A key ingredient for subsequent sections is thus a dynamic coars-

ening algorithm, as follows.

De�nition 4.2. A dynamic (Y, X)-coarsening algorithm is a data

structure supporting the following operations:

• init(� = (+ , �), x ∈ R�≥0): initializes the data structure for
undirected graph� with vertices+ and edges �, current vector

x.

• update(4 ∈ �, a ∈ [0, 1]): sets G4 ← a .

The algorithm must maintain an (Y, X)-coarsening x′ of (the current)
x.

As we show in the full version, the internal state of Algorithm 2

yields a dynamic coarsening algorithm. In this section we state

bounds for a number of dynamic coarsening algorithms, with the

objective of using their output as the input of Algorithm 2, from

which we obtain faster dynamic bipartite rounding algorithms than

when using the latter algorithm in isolation. The following lemma

(proven in the complete version) captures the bene�t of this ap-

proach.

Lemma 4.3. (From coarsening to rounding). Let C be a dynamic

(n, X)-coarsening algorithm with update time C C
*

:= C C
*
(Y, X, =) and

init time$ (|supp(x) | · C C
�
). Let R be a dynamic rounding algorithm

for fractional matchings x with xmin ≥ X , with update time CR
*

:=

CR
*
(Y, X, =) and init time $ (|supp(x) | · CR

�
), for CR

�
:= CR

�
(Y, X, =).

Then, there exists an $ (n + X)-approximate dynamic rounding algo-

rithm R∗ with update time $ (C C
*
+ CR

*
+ Y−1 · CR

�
) and init time

$ (|supp(x) | · (CR
�
+ C C

�
)) which is deterministic/adaptive/output-

adaptive if both R and C are.

In our invocations of Lemma 4.3 we will use Algorithm 2 to

play the role of Algorithm R. In the complete version we provide a

number of coarsening algorithm, whose properties we state in this

section, together with the obtained rounding algorithms’ guaran-

tees.

A number of our coarsening algorithms will make use of sub-

routines for splitting (most of) the fractional matching’s support

into numerous disjoint coarsenings, as in the following.

De�nition 4.4. An (n, X)-split of fractional matching z ∈ R�≥0 with
zmax ≤ X consists of (n, X)-coarsenings z(1) , . . . , z(:) with disjoint

supports, together covering at least half of supp(z), i.e.,
∑

8

|supp(z(i)) | ≥ 1

2
· |supp(z) |.

The following lemma combined with Lemma 4.3 motivates our

interest in such splits.

Lemma 4.5. (From static spli�ing to dynamic coarsening). Let

S be a static (W, X)-split algorithm with running time |supp(x) | ·CB on

66

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

uniform fractional matching x, where CB := CB (=,W, X). Then there ex-

ists a dynamic algorithm C which for any (possibly non-uniform) frac-

tional matching x maintains an
(
$
(
Y + W · Y−1 · (log(W−1 · =)

)
, X
)
-

coarsening of xwith update time$ (Y−1 ·CB), init time$ (|supp(x) | ·
CB). Algorithm C is deterministic/adaptive/output-adaptive if A is.

Section outline. We prove Lemmas 4.34.5 in the complete version

of the paper. Before that, we state bounds of a number of such

partial rounding algorithms together with the rounding algorithms

we obtain from these, yielding Theorem 1.2.

4.1 Partial Rounding Algorithms, with

Applications

Here we state the properties of our coarsening and splitting algo-

rithms (presented in the complete version of the paper), together

with the implications to dynamic rounding, as stated in Theorem 1.2.

Simmiliarly, we provide a deterministic static split algorithm as

stated in the following lemma.

Lemma 4.6. For any Y > 0, there exists a deterministic static (4Y, Y)-
split algorithm which on input uniform fractional matchings x runs

in time $
(
|supp(x) | · log(n−1 · =

)
).

Combining the above lemma with Lemmas 4.34.5 yields the �rst

result of Theorem 1.2.

Corollary 4.7. There exists a deterministic dynamic bipartite round-

ing algorithm with update time $ (Y−1 · C (Y, =)) and init time

$ (|supp(x) | · C (Y, =)), for C (Y, =) = log= + log2 (Y−1).

Proof. By Algorithmalg:det-split, there exists a deterministic

static
(
4Y3

log=
, Y3

log=

)
-split algorithm that on uniform fractional match-

ing x runs in $ (|supp(x) | · log(Y−1 · =)) time. Plugging this algo-

rithm into Lemma 4.5 yields a deterministic dynamic
(
$ (Y), Y3

log=

)
-

coarsening algorithm C with update time C C
*

= $ (Y−1 · (log=)) and
initialization time $ (|supp(x) | · log=). Moreover, by Theorem 3.7

there exists a deterministic dynamic bipartite matching round-

ing algorithm R for fractional bipartite matchings x with xmin =

Ω(poly(Y−1 ·log=)) with update time CR
*

= $ (Y−1 ·log2 (Y−1 ·log=))
and init time$ (|supp(x) | · CR

�
), for CR

�
= $ (log(Y−1 · log=)). Plug-

ging these algorithms into Lemma 4.10, we obtain a deterministic

algorithm which has update time

$ (C C* + C
R
* + C

R
� · Y

−1) =
$ (Y−1 · (log= + log2 (Y−1 · log=))) =
$ (Y−1 · (log= + log2 (Y−1))

and initialization time$ (|supp(x) | · (log= + log2 (Y−1)). The last
equality holds for all ranges of = and Y, whether Y−1 = $ (log=) or
Y−1 = Ω(log=). □

Next, in the complete version we provide a simple linear-time

subsampling-based randomized split algorithm with the following

properties.

Lemma 4.8. For any Y > 0, there exists a static randomized algo-

rithm that on uniform fractionalmatchings x computes an (Y, Y4

24 log2 =
)-

split in $ (|supp(x) |)-time, and succeeds w.h.p.

Combining the above lemma with Lemma 4.3 and Lemma 4.5

yields the w.h.p. result of Theorem 1.2.

Corollary 4.9. There exists an adaptive dynamic bipartite rounding

algorithm that succeeds w.h.p., with update time

$ (Y−1 · C (Y, =)) and init time$ (|supp(x) | · C (Y, =)), for C (Y, =) =
log2 log= + log2 (Y−1).

Proof. By Lemma 4.8, there exists a randomized static algorithm

that computes a
(

Y3

log(=) ,
Y12

24·log6 (=)

)
-split of any uniform fractional

matching x in $ (|supp(x) |) time, succeeding w.h.p. Plugging this

algorithm into Lemma 4.5 we obtain a randomized (with high prob-

ability) dynamic
(
$ (Y), Y12

24·log6 (=)

)
-coarsening algorithm C with

update time C C
*

= $ (Y−1) and init time $ (|supp(x) |). On the

other hand, by Theorem 3.7, there exists a deterministic dynamic

bipartite matching rounding algorithm R for fractional match-

ings x with xmin = Ω(poly(Y−1 · log=)) with update time CR
*

=

$ (Y−1 · log2 (log= · Y−1)) and init time$ (|supp(x) | · CR
�
), for CR

�
=

$ (log(log= · Y−1)). Plugging these algorithms into Lemma 4.10, we

obtain a randomized adaptive algorithm which works with high

probability and has update time

$ (C C* + C
R
* + C

R
� · Y

−1) =
$ (Y−1 · log2 (log= · Y−1)) =

$
(
Y−1 ·

(
log2 log= + log2 (Y−1)

))

and init time$ (|supp(x) | · log2 (log=)+log2 (Y−1)). The last equal-
ity holds whether Y−1 = $ (log=) or Y−1 = Ω(log=). □

In the complete version of the paper building on a output-adaptive

dynamic set sampling algorithm which we give an output-adaptive

coarsening algorithm with constant (and in particular independent

of =) expected amortized update time.

Lemma 4.10. There exists an output-adaptive dynamic ($ (Y), Y3)-
coarsening algorithm for dynamic fractional matchings x with ex-

pected update time $ (Y−1) and expected init time $ (|supp(x) |).

Finally, combining the above lemma with Lemma 4.3 yields the

third result of Theorem 1.2.

Corollary 4.11. There exists an output-adaptive dynamic bipartite

rounding algorithm with expected update time $ (Y−1 · C (Y)) and
expected init time $ (|supp(x) | · C (Y)) for C (Y) = log2 (Y−1).

Proof. By Lemma 4.10, there exists a dynamic (Y,$ (Y3)) coars-
ening algorithm C with expected update time C C

*
= $ (1) and

init time $ (|supp(x) |). On the other hand, by Theorem 3.7 there

exists a deterministic (hence output-adaptive) dynamic bipartite

matching rounding algorithm R for fractional matchings x with

xmin = Ω(Y3) with update time CR
*

= $ (Y−1 · log2 (Y−1)) and init
time $ (|supp(x) | · CR

�
), for CR

�
= $ (log(Y−1)). Plugging these algo-

rithms into Lemma 4.10, we obtain an output-adaptive algorithm

with expected update time$ (C C
*
+CR

*
+CR

�
·Y−1) = $ (Y−1 ·log2 (Y−1))

and expected

inittime$ (|supp(x) | · log2 (Y−1))
. □

67

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

ACKNOWLEDGEMENTS

Author Sayan Bhattacharya was Supported by Engineering and

Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.

Author Peter Kiss’s work was done in part while visiting Max-

Planck-Institut für Informatik. Author Aaron Sidford was supported

in part by a Microsoft Research Faculty Fellowship, NSF CAREER

Award CCF-1844855, NSF Grant CCF-1955039, a PayPal research

award, and a Sloan Research Fellowship. Author David Wajc’s work

was done in part while at Stanford University and Google Research.

Supported by a Taub Family Foundation “Leader in Science and

Technology” fellowship. Thank you to Arun Jambulapati for help-

ful conversations which were foundational for the static bipartite

rounding algorithm in this paper and subsequent developments.

Part of this work was conducted while authors in positions 20, 21

and 22 (alphabetically) were visiting Dagstuhl program 22461, “Dy-

namic Graph Algorithms”.

While leaving much of the main sections of the paper to the full

version (available at https://arxiv.org/abs/2306.11828) we included

the following tool from the appendixwhichmight be of independent

research interest.

A DYNAMIC SET SAMPLING

In this section we provide an output-adaptive data structure for

the dynamic set sampling problem (restated below). Recall that

this is the basic problem of maintaining a dynamic subset of [=]
where every element is included in the subset independently with

probability ?8 under dynamic changes to ?8 and re-sampling. This

basic problem was studied by [30, 54, 56].

De�nition A.1. A dynamic set sampler is a data structure support-

ing the following operations:

• init(=, p ∈ [0, 1]=): initialize the data structure for =-size set
(and probability vector p.

• set(8 ∈ [=], U ∈ [0, 1]): set ?8 ← U .

• sample(): return) ⊆ R= containing each 8 ∈ (independently

with probability ?8 .

Our main result of this section is that we can implement in each

operation in total time linear in the number of operations, =, and

the size of the) output.

Theorem A.2. Algorithm 3 is a set sampler data structure using

$ (=) space that implements init in $ (=) time, set in $ (1) time,

and) = sample() in expected$ (1 + |) |) time in a word RAM model

with word sizeF = Ω(log(?−1
min
)), under the promise that ?8 ≥ ?min

for all 8 ∈ [=] throughout. These guarantees hold even if the input is

chosen by an output-adaptive adversary.

Comparison with the concurrent work of [56]. Our solution is

somewhat simpler than that of the concurrent set sampler of [56].

For our purposes, the only important di�erence is that our algo-

rithm is provably output-adaptive.

Our Algorithm 3 and associated proof of Theorem A.2 stem from

a simple insight about computing when an element 8 ∈ [=] will be
in the output of sample(). Note that if there are no operations of

the form set(8, U), then the probability 8 is in any individual output

of sample() is ?8 . Consequently, the probability that ?8 is not in

the output of sample() for the next C calls to sample() is (1 − ?8)C .
Therefore, the number of calls to sample() it takes for 8 to be in the

output sample follows the geometric distribution with parameter

?8 , i.e. Geo(?8)!
Leveraging this simple insight above leads to an e�cient set

sampler data structures. Naively, implementing set sampling takes

$ (=) time per call to sample(), used to determine for each element

8 whether or not it should be in the output. However, we could

instead simply sample from geom(?8) (in expected $ (1), using
[29]) whenever set(8, U) is called or 8 is in the output of sample(),
in order to determine the next call to sample() which will result

in 8 being in the output. Provided we can e�ciently keep track of

this information for each 8 , this would yield the desired bounds in

Theorem A.2.

Unfortunately, when sampling from geom(?8), the output could
be arbitrarily large (albeit with small probability). Further, main-

taining the data structure for knowing when 8 is scheduled to be in

the output of sample() would naively involve maintaining a heap

on arbitrary large numbers, incurring logarithmic factors. There are

many potential data-structures and techniques to solve this prob-

lem. In our Algorithm 3 we provide one simple, straightforward

solution. Every = calls to sample(), we “rebuild” our data structure
and rather than sampling from geom(?8) to determine the next

call to sample() that will output 8 , we instead simply sample to

determine the next call to sample() before the rebuild that will

output 8 (if there is one). Algorithm 3 simply does this, resampling

this time for 8 whenever set(8, U) is called.

Algorithm 3: Set Sampler Data Structure

global :Size = and ? ∈ [0, 1]=
global :Current (relative) time g , subsets)1, ...,)= ⊆ [=],

and next sample times g1, ..., g= ∈ [= + 1]
1 function init(=, ? ∈ [0, 1]=)
2 Save = and ? as global variables;

3 Initialize g ← 1,)8 = ∅, and g8 = = + 1 for all 8 ∈ [=];
4 Call set(8, ?8) for all 8 ∈ (;
5 function set(8 ∈ [=], U ∈ [0, 1])
6 if g8 ≠ = + 1 then)g8 ←)g8 \ {8};

// The loop below can be implemented in

expected $ (1) time (see Lemma A.3)

7 for 9 = g to = do

8 Independently with probability ?8 , set)9 ←)9 ∪ {8},
g8 = 9 , and return

9 end

10 g8 = = + 1;
11 function sample()
12 Set) ←)g and then set g ← g + 1;
13 if g < = + 1 then call set(8, ?8) for all 8 ∈) ;
14 else set g = 1, and then call set(8, ?8) for all 8 ∈ [=];

return :)

68

https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://www.dagstuhl.de/en/seminars/seminar-calendar/seminar-details/22461
https://arxiv.org/abs/2306.11828

Near-Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Algorithm 3 is written without an e�cient determination of

the next output time for each element, so that it is clear that this

algorithm is a set sampler. In the following Lemma A.3 we show

how to perform this e�cient determination or, more precisely,

implementing the for-loop in Lines 7-8 We then use this lemma to

prove Theorem A.2.

Lemma A.3. The for-loop in Lines 7-8 of Algorithm 3 can be imple-

mented in expected $ (1) time in the word RAM model.

Proof. The loop executes the return statement with a value

of 9 ∈ [C, =] with probability ? 9−C (1 − ?). Consequently, if we let
ℓ ≥ 0 be sampled by the geometric distribution with probability ? ,

i.e., Pr[ℓ = E] = ?E (1 − ?) for all E ∈ Z>0, and if ℓ ∈ {0, ..., = − C}
simply execute the return statement with 9 = C +ℓ and otherwise set
g8 = = + 1, then this is equivalent to the lines of the for loop. Since

sampling from a geometric distribution Geo(?) in this manner can

be implemented in expected $ (log(1/?)/F) = $ (1) time in the

word RAM model [29], the result follows. □

Proof of Theorem A.2. Algorithm 3 maintains that after each

operation (init, set or sample), each 8 ∈ [=] is a member of at

most one)9 . Further, if 8 ∈)9 , then g ≤ 9 and g8 = 9 and moreover

g8 = =+1 if and only if 8 ∉)9 for any 9 ∈ [=]. Further, the algorithm
is designed (as discussed) so that)g is a valid output of sample

at time g (for any updates of an output-adaptive adversary, that

is unaware of)9 for 9 ≥ g). Since the algorithm also ensures that

g ≤ =, the algorithm has the desired output. Further, from these

properties it is clear that the algorithm can be implemented in$ (=)
space. It only remains to bound the running time for implementing

the algorithm.

To analyze the running time of the algorithm, �rst note that by

Lemma A.3, each set operation can be implemented in expected

$ (1) time. Consequently, init can be implemented in expected

$ (=) time. Further, since) = sample() simply calls set for ele-

ments in its output or for all = elements after every = times it is

called, it has the desired expected runtime $ (1 + |) |) as well. □

REFERENCES
[1] Amir Abboud and Søren Dahlgaard. 2016. Popular conjectures as a barrier

for dynamic planar graph algorithms. In Proceedings of the 57th Symposium on
Foundations of Computer Science. 477–486.

[2] Amir Abboud and Virginia VassilevskaWilliams. 2014. Popular conjectures imply
strong lower bounds for dynamic problems. In Proceedings of the 55th Symposium
on Foundations of Computer Science. 434–443.

[3] Moab Arar, Shiri Chechik, Sarel Cohen, Cli� Stein, and David Wajc. 2018. Dy-
namic Matching: Reducing Integral Algorithms to Approximately-Maximal Frac-
tional Algorithms. In Proceedings of the 45th International Colloquium on Au-
tomata, Languages and Programming. 79:1–79:16.

[4] Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On
regularity lemma and barriers in streaming and dynamic matching. In Proceedings
of the 55th Symposium on Theory of Computing.

[5] Sepehr Assadi, Aaron Bernstein, andAditi Dudeja. 2022. DecrementalMatching in
General Graphs. In Proceedings of the 49th International Colloquium on Automata,
Languages and Programming. 11:1–11:19.

[6] Amir Azarmehr, Soheil Behnezhad, and Mohammad Roghani. 2024. Fully Dy-

namic Matching: (2−
√
2)-Approximation in Polylog Update Time. In Proceedings

of the 35th Symposium on Discrete Algorithms.
[7] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2015. Fully DynamicMaximal

Matching in$ (log=) Update Time. SIAM J. Comput. 44, 1 (2015), 88–113.
[8] Soheil Behnezhad. 2023. Dynamic algorithms for maximum matching size. In

Proceedings of the 34th Symposium on Discrete Algorithms. 129–162.

[9] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cli� Stein,
and Madhu Sudan. 2019. Fully dynamic maximal independent set with polylog-
arithmic update time. In Proceedings of the 60th Symposium on Foundations of
Computer Science. 382–405.

[10] Soheil Behnezhad and Sanjeev Khanna. 2022. New Trade-O�s for Fully Dynamic
Matching via Hierarchical EDCS. In Proceedings of the 33rd Symposium on Discrete
Algorithms. 3529–3566.

[11] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. 2020. Fully Dynamic Match-
ing: Beating 2-Approximation in Δ

n Update Time. In Proceedings of the 31st
Symposium on Discrete Algorithms. 2492–2508.

[12] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranu-
rak, and Uri Stemmer. 2022. Dynamic algorithms against an adaptive adversary:
Generic constructions and lower bounds. In Proceedings of the 54th Symposium
on Theory of Computing. 1671–1684.

[13] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A deamortiza-
tion approach for dynamic spanner and dynamic maximal matching. In Proceed-
ings of the 30th Symposium on Discrete Algorithms. 1899–1918.

[14] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.
2020. Deterministic decremental reachability, SCC, and shortest paths via directed
expanders and congestion balancing. In Proceedings of the 61st Symposium on
Foundations of Computer Science. 1123–1134.

[15] Aaron Bernstein and Cli� Stein. 2015. Fully Dynamic Matching in Bipartite
Graphs. In Proceedings of the 42nd International Colloquium on Automata, Lan-
guages and Programming. 167–179.

[16] Aaron Bernstein and Cli� Stein. 2016. Faster fully dynamic matchings with
small approximation ratios. In Proceedings of the 27th Symposium on Discrete
Algorithms. 692–711.

[17] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2020. De-
terministic dynamic matching in$ (1) update time. Algorithmica 82, 4 (2020),
1057–1080.

[18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. 2015. Determin-
istic fully dynamic data structures for vertex cover and matching. In Proceedings
of the 26th Symposium on Discrete Algorithms. 785–804.

[19] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New de-
terministic approximation algorithms for fully dynamic matching. In Proceedings
of the 48th Symposium on Theory of Computing. 398–411.

[20] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully
Dynamic Approximate Maximum Matching and Minimum Vertex Cover in

$ (log3 =) Worst Case Update Time. In Proceedings of the 28th Symposium on
Discrete Algorithms. 470–489.

[21] Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic
Fractional Matchings. In Proceedings of the 48th International Colloquium on
Automata, Languages and Programming. 27:1–27:14.

[22] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Dynamic
(1+n)-Approximate Matching Size in Truly Sublinear Update Time. Proceedings
of the 64th Symposium on Foundations of Computer Science, 1563–1588.

[23] Sayan Bhattacharya, Peter Kiss, and Thatchaphol Saranurak. 2023. Dynamic
Algorithms for Packing-Covering LPs via Multiplicative Weight Updates. In
Proceedings of the 34th Symposium on Discrete Algorithms. 1–47.

[24] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2023.
Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update
Time. In Proceedings of the 34th Symposium on Discrete Algorithms. 100–128.

[25] Sayan Bhattacharya, Peter Kiss, Aaron Sidford, and David Wajc. 2024. Near-
Optimal Dynamic Rounding of Fractional Matchings in Bipartite Graphs.
arXiv:2306.11828 [cs.DS]

[26] Sayan Bhattacharya and Janardhan Kulkarni. 2019. DeterministicallyMaintaining

a (2 + n)-Approximate Minimum Vertex Cover in$ (1/Y2) Amortized Update
Time. In Proceedings of the 30th Symposium on Discrete Algorithms. 1872–1885.

[27] Joakim Blikstad and Peter Kiss. 2023. Incremental (1 − n)-approximate dynamic
matching in $ (poly(1/n)) update time. In Proceedings of the 31st European
Symposium on Algorithms. 22:1–22:19.

[28] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. 2019.
Dynamic matrix inverse: Improved algorithms and matching conditional lower
bounds. In Proceedings of the 60th Symposium on Foundations of Computer Science.
456–480.

[29] Karl Bringmann and Tobias Friedrich. 2013. Exact and e�cient generation
of geometric random variates and random graphs. In Proceedings of the 40th
International Colloquium on Automata, Languages and Programming. 267–278.

[30] Karl Bringmann and Konstantinos Panagiotou. 2017. E�cient sampling methods
for discrete distributions. Algorithmica 79 (2017), 484–508.

[31] Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Match-
ing: Breaking the Polynomial Barrier for Worst-Case Time Bounds. In Proceedings
of the 45th International Colloquium on Automata, Languages and Programming.
33:1–33:14.

[32] Shiri Chechik and Tianyi Zhang. 2019. Fully dynamic maximal independent
set in expected poly-log update time. In Proceedings of the 60th Symposium on
Foundations of Computer Science. 370–381.

69

https://arxiv.org/abs/2306.11828

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Sayan Bha�acharya, Peter Kiss, Aaron Sidford, and David Wajc

[33] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum �ow and minimum-cost �ow in almost-
linear time. In Proceedings of the 63rd Symposium on Foundations of Computer
Science.

[34] Julia Chuzhoy and Sanjeev Khanna. 2019. A new algorithm for decremental
single-source shortest paths with applications to vertex-capacitated �ow and cut
problems. In Proceedings of the 51st Symposium on Theory of Computing. 389–400.

[35] Søren Dahlgaard. 2016. On the Hardness of Partially Dynamic Graph Problems
and Connections to Diameter. In Proceedings of the 43rd International Colloquium
on Automata, Languages and Programming. 48:1–48:14.

[36] Ran Duan and Seth Pettie. 2014. Linear-time approximation for maximum weight
matching. J. ACM 61, 1 (2014), 1.

[37] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B 69, 125-130 (1965), 55–56.

[38] Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn,
and Shay Solomon. 2019. (1+n)-Approximate Incremental Matching in Constant
Deterministic Amortized Time. In Proceedings of the 30th Symposium on Discrete
Algorithms. 1886–1898.

[39] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.
2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and
with Worst-Case Time Bounds. Proceedings of the 5th Symposium on Simplicity
in Algorithms (2022), 12–23.

[40] Manoj Gupta and Richard Peng. 2013. Fully dynamic (1 + Y)-approximate
matchings. In Proceedings of the 54th Symposium on Foundations of Computer
Science. 548–557.

[41] Manoj Gupta, Venkatesh Raman, and SP Suresh. 2014. Maintaining Approximate
Maximum Matching in an Incremental Bipartite Graph in Polylogarithmic Up-
date Time. In Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), Vol. 29. 227–239.

[42] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. 2015. Unifying and strengthening hardness for dynamic problems
via the online matrix-vector multiplication conjecture. In Proceedings of the 47th
Symposium on Theory of Computing. 21–30.

[43] Zoran Ivkovic and Errol L Lloyd. 1993. Fully Dynamic Maintenance of Ver-
tex Cover. In Proceedings of the 19th International Workshop on Graph-Theoretic
Concepts in Computer Science. 99–111.

[44] Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022. Regularized
Box-Simplex Games andDynamic Decremental BipartiteMatching. In Proceedings
of the 49th International Colloquium on Automata, Languages and Programming.

[45] Peter Kiss. 2022. Improving update times of dynamic matching algorithms
from amortized to worst case. Proceedings of the 13th Innovations in Theoretical
Computer Science (2022), 94:1–94:21.

[46] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from the
3SUM conjecture. In Proceedings of the 27th Symposium on Discrete Algorithms.
1272–1287.

[47] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning

forest with worst-case update time: adaptive, Las Vegas, and$ (=1/2 − Y)-time.
In Proceedings of the 49th Symposium on Theory of Computing. 1122–1129.

[48] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and a
small vertex cover. In Proceedings of the 42nd Symposium on Theory of Computing.
457–464.

[49] David Peleg and Shay Solomon. 2016. Dynamic (1 + n)-approximate matchings:
a density-sensitive approach. In Proceedings of the 27th Symposium on Discrete
Algorithms. 712–729.

[50] Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folk-
lore Algorithm for Dynamic Matching. In Proceedings of the 13th Innovations in
Theoretical Computer Science. 111:1–111:23.

[51] Piotr Sankowski. 2009. Maximum weight bipartite matching in matrix multipli-
cation time. Theoretical Computer Science (TCS) 410, 44 (2009), 4480–4488.

[52] Noam Solomon and Shay Solomon. 2021. A Generalized Matching Recon�gu-
ration Problem. In Proceedings of the 12th Innovations in Theoretical Computer
Science. 57:1–57:20.

[53] Shay Solomon. 2016. Fully dynamic maximal matching in constant update time. In
Proceedings of the 57th Symposium on Foundations of Computer Science. 325–334.

[54] Meng-Tsung Tsai, Da-Wei Wang, Churn-Jung Liau, and Tsan-sheng Hsu. 2010.
Heterogeneous subset sampling. In Proceedings of the 16th International Comput-
ing and Combinatorics Conference. 500–509.

[55] David Wajc. 2020. Rounding dynamic matchings against an adaptive adversary.
In Proceedings of the 52nd Symposium on Theory of Computing. 194–207.

[56] Lu Yi, Hanzhi Wang, and Zhewei Wei. 2023. Optimal Dynamic Subset Sampling:
Theory and Applications. In Proceedings of the 29th Knowledge Discovery and
Data Mining.

[57] Da Wei Zheng and Monika Henzinger. 2023. Multiplicative Auction Algorithm
for Approximate MaximumWeight Bipartite Matching. In Proceedings of the 24th
Integer Programming and Combinatorial Optimization.

Received 13-NOV-2023; accepted 2024-02-11

70

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Approach in a Nutshell
	1.3 Related Work
	1.4 Paper Outline

	2 Preliminaries
	2.1 The Degree-Split subroutine

	3 Simple Rounding for Bipartite Matchings
	3.1 Warm-up: Static Bipartite Rounding
	3.2 A Simple Dynamic Bipartite Rounding Algorithm

	4 Partial Rounding: a Path to Speedups
	4.1 Partial Rounding Algorithms, with Applications

	A Dynamic Set Sampling
	References

