File size: 17,943 Bytes
2b49fe2 bdd1d60 efeee8a 9874228 2b49fe2 c825935 2b49fe2 e87e116 efeee8a e87e116 efeee8a c6dd7aa efeee8a d3bd75e c5489ad c6dd7aa a0471c4 ebfe870 b04411c ebfe870 b04411c ebfe870 c6dd7aa 50ce4f4 1f8519e 50ce4f4 cd10873 50ce4f4 2b66ae3 50ce4f4 b6390e8 2b66ae3 50ce4f4 2b66ae3 340640b 50ce4f4 1f8519e 50ce4f4 b6390e8 50ce4f4 b6390e8 50ce4f4 b6390e8 340640b b4bb2e9 50ce4f4 8f32fbf 4ce3a07 ce466e4 4ce3a07 8f32fbf ca1b654 ce466e4 77d2a77 65b8143 ca1b654 ce466e4 77d2a77 ce466e4 85debe8 ce466e4 9239cfa e2ecd0a ce466e4 6800334 ebfe870 a267a6b 0b05f1f a267a6b ebfe870 a267a6b ca1b654 c6dd7aa 7c56f41 c6dd7aa a0471c4 f5b635d a0471c4 f5b635d 9839e32 f5b635d a0471c4 ebfe870 633647b c6dd7aa 4ae941b bdd1d60 402ce08 c6dd7aa 50ce4f4 402ce08 c5489ad 4ae941b f5b635d 402ce08 ca1b654 402ce08 f5b635d 402ce08 50ce4f4 402ce08 10ced5b 1f8519e f5b635d 402ce08 ca1b654 402ce08 f5b635d 402ce08 10ced5b ca1b654 28c20d6 ca1b654 28c20d6 ebfe870 28c20d6 ca1b654 28c20d6 ebfe870 28c20d6 ca1b654 28c20d6 ca1b654 c8e743e ca1b654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import numpy as np
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
#import jax
#import jax.numpy as jnp
import torch
import torch.nn.functional as F
#from custom_modeling_albert_flax import CustomFlaxAlbertForMaskedLM
def wide_setup():
max_width = 1500
padding_top = 0
padding_right = 2
padding_bottom = 0
padding_left = 2
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
def load_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
@st.cache(show_spinner=True,allow_output_mutation=True)
def load_model(model_name):
if model_name.startswith('albert'):
from transformers import AlbertTokenizer, AlbertForMaskedLM
from skeleton_modeling_albert import SkeletonAlbertForMaskedLM
tokenizer = AlbertTokenizer.from_pretrained(model_name)
model = AlbertForMaskedLM.from_pretrained(model_name)
skeleton_model = SkeletonAlbertForMaskedLM
elif model_name.startswith('bert'):
from transformers import BertTokenizer, BertForMaskedLM
from skeleton_modeling_bert import SkeletonBertForMaskedLM
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
skeleton_model = SkeletonBertForMaskedLM
elif model_name.startswith('roberta'):
from transformers import RobertaTokenizer, RobertaForMaskedLM
from skeleton_modeling_roberta import SkeletonRobertaForMaskedLM
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaForMaskedLM.from_pretrained(model_name)
skeleton_model = SkeletonRobertaForMaskedLM
return tokenizer,model,skeleton_model
def clear_data():
for key in st.session_state:
del st.session_state[key]
def annotate_mask(sent_id,sent):
show_instruction(f'Sentence {sent_id}',fontsize=16)
input_sent = tokenizer(sent).input_ids
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
st.session_state[f'decoded_sent_{sent_id}'] = decoded_sent
char_nums = [len(word)+2 for word in decoded_sent]
cols = st.columns(char_nums)
if f'mask_locs_{sent_id}' not in st.session_state:
st.session_state[f'mask_locs_{sent_id}'] = []
for word_id,(col,word) in enumerate(zip(cols,decoded_sent)):
with col:
if st.button(word,key=f'word_mask_{sent_id}_{word_id}'):
if word_id not in st.session_state[f'mask_locs_{sent_id}']:
st.session_state[f'mask_locs_{sent_id}'].append(word_id)
else:
st.session_state[f'mask_locs_{sent_id}'].remove(word_id)
show_annotated_sentence(decoded_sent,
mask_locs=st.session_state[f'mask_locs_{sent_id}'])
def annotate_options(sent_id,sent):
show_instruction(f'Sentence {sent_id}',fontsize=16)
input_sent = tokenizer(sent).input_ids
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
char_nums = [len(word)+2 for word in decoded_sent]
cols = st.columns(char_nums)
if f'option_locs_{sent_id}' not in st.session_state:
st.session_state[f'option_locs_{sent_id}'] = []
for word_id,(col,word) in enumerate(zip(cols,decoded_sent)):
with col:
if st.button(word,key=f'word_option_{sent_id}_{word_id}'):
if word_id not in st.session_state[f'option_locs_{sent_id}']:
st.session_state[f'option_locs_{sent_id}'].append(word_id)
else:
st.session_state[f'option_locs_{sent_id}'].remove(word_id)
show_annotated_sentence(decoded_sent,
option_locs=st.session_state[f'option_locs_{sent_id}'],
mask_locs=st.session_state[f'mask_locs_{sent_id}'])
st.session_state[f'option_locs_{sent_id}'] = list(np.sort(st.session_state[f'option_locs_{sent_id}']))
st.session_state[f'mask_locs_{sent_id}'] = list(np.sort(st.session_state[f'mask_locs_{sent_id}']))
def show_annotated_sentence(sent,option_locs=[],mask_locs=[]):
disp_style = '"font-family:san serif; color:Black; font-size: 20px"'
prefix = f'<p style={disp_style}><span style="font-weight:bold">'
style_list = []
for i, word in enumerate(sent):
if i in mask_locs:
style_list.append(f'<span style="color:Red">{word}</span>')
elif i in option_locs:
style_list.append(f'<span style="color:Blue">{word}</span>')
else:
style_list.append(f'{word}')
disp = ' '.join(style_list)
suffix = '</span></p>'
return st.markdown(prefix + disp + suffix, unsafe_allow_html = True)
def show_instruction(sent,fontsize=20):
disp_style = f'"font-family:san serif; color:Black; font-size: {fontsize}px"'
prefix = f'<p style={disp_style}><span style="font-weight:bold">'
suffix = '</span></p>'
return st.markdown(prefix + sent + suffix, unsafe_allow_html = True)
def create_interventions(token_id,interv_types,num_heads,multihead=False,heads=[]):
interventions = {}
for rep in ['lay','qry','key','val']:
if rep in interv_types:
if multihead:
interventions[rep] = [(head_id,token_id,[0,1]) for head_id in range(num_heads)]
else:
interventions[rep] = [(head_id,token_id,[i,i+len(heads)]) for i,head_id in enumerate(heads)]
else:
interventions[rep] = []
return interventions
def separate_options(option_locs):
assert np.sum(np.diff(option_locs)>1)==1
sep = list(np.diff(option_locs)>1).index(1)+1
option_1_locs, option_2_locs = option_locs[:sep], option_locs[sep:]
if len(option_1_locs)>1:
assert np.all(np.diff(option_1_locs)==1)
if len(option_2_locs)>1:
assert np.all(np.diff(option_2_locs)==1)
return option_1_locs, option_2_locs
def mask_out(input_ids,pron_locs,option_locs,mask_id):
if len(pron_locs)>1:
assert np.all(np.diff(pron_locs)==1)
# note annotations are shifted by 1 because special tokens were omitted
return input_ids[:pron_locs[0]+1] + [mask_id for _ in range(len(option_locs))] + input_ids[pron_locs[-1]+2:]
def run_intervention(interventions,batch_size,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs):
probs = []
for masked_ids, option_tokens in zip([masked_ids_option_1, masked_ids_option_2],[option_1_tokens,option_2_tokens]):
input_ids = torch.tensor([
*[masked_ids['sent_1'] for _ in range(batch_size)],
*[masked_ids['sent_2'] for _ in range(batch_size)]
])
outputs = skeleton_model(model,input_ids,interventions=interventions)
logprobs = F.log_softmax(outputs['logits'], dim = -1)
logprobs_1, logprobs_2 = logprobs[:batch_size], logprobs[batch_size:]
evals_1 = [logprobs_1[:,pron_locs['sent_1'][0]+1+i,token].numpy() for i,token in enumerate(option_tokens)]
evals_2 = [logprobs_2[:,pron_locs['sent_2'][0]+1+i,token].numpy() for i,token in enumerate(option_tokens)]
probs.append([np.exp(np.mean(evals_1,axis=0)),np.exp(np.mean(evals_2,axis=0))])
probs = np.array(probs)
assert probs.shape[0]==2 and probs.shape[1]==2 and probs.shape[2]==batch_size
return probs
def show_results(effect_array,masked_sent,token_id_list,num_layers):
cols = st.columns(len(masked_sent)-2)
for col_id,col in enumerate(cols):
with col:
st.write(tokenizer.decode([masked_sent[col_id+1]]))
if col_id in token_id_list:
interv_id = token_id_list.index(col_id)
fig,ax = plt.subplots()
ax.set_box_aspect(num_layers)
ax.imshow(effect_array[:,interv_id:interv_id+1],cmap=sns.color_palette("light:r", as_cmap=True),
vmin=effect_array.min(),vmax=effect_array.max())
ax.set_xticks([])
ax.set_xticklabels([])
ax.set_yticks([])
ax.set_yticklabels([])
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
st.pyplot(fig)
if __name__=='__main__':
wide_setup()
load_css('style.css')
if 'page_status' not in st.session_state:
st.session_state['page_status'] = 'model_selection'
if st.session_state['page_status']=='model_selection':
show_instruction('0. Select the model and click "Confirm"',fontsize=16)
model_name = st.selectbox('Please select the model from below.',
('bert-base-uncased','bert-large-cased',
'roberta-base','roberta-large',
'albert-base-v2','albert-large-v2','albert-xlarge-v2','albert-xxlarge-v2'),
index=3,label_visibility='collapsed')
st.session_state['model_name'] = model_name
if st.button('Confirm',key='confirm_models'):
st.session_state['page_status'] = 'type_in'
st.experimental_rerun()
if st.session_state['page_status']!='model_selection':
tokenizer,model,skeleton_model = load_model(st.session_state['model_name'])
num_layers, num_heads = model.config.num_hidden_layers, model.config.num_attention_heads
mask_id = tokenizer(tokenizer.mask_token).input_ids[1:-1][0]
if st.session_state['page_status']=='type_in':
show_instruction('1. Type in the sentences and click "Tokenize"',fontsize=16)
sent_1 = st.text_input('Sentence 1',value="Paul tried to call George on the phone, but he wasn't successful.")
sent_2 = st.text_input('Sentence 2',value="Paul tried to call George on the phone, but he wasn't available.")
if st.button('Tokenize'):
st.session_state['page_status'] = 'annotate_mask'
st.session_state['sent_1'] = sent_1
st.session_state['sent_2'] = sent_2
st.experimental_rerun()
if st.session_state['page_status']=='annotate_mask':
sent_1 = st.session_state['sent_1']
sent_2 = st.session_state['sent_2']
show_instruction('2. Select sites to mask out and click "Confirm"',fontsize=16)
#show_instruction('------------------------------',fontsize=32)
annotate_mask(1,sent_1)
show_instruction('------------------------------',fontsize=24)
annotate_mask(2,sent_2)
if st.button('Confirm',key='confirm_mask'):
st.session_state['page_status'] = 'annotate_options'
st.experimental_rerun()
if st.session_state['page_status'] == 'annotate_options':
sent_1 = st.session_state['sent_1']
sent_2 = st.session_state['sent_2']
show_instruction('3. Select options and click "Confirm"',fontsize=16)
#show_instruction('------------------------------',fontsize=32)
annotate_options(1,sent_1)
show_instruction('------------------------------',fontsize=24)
annotate_options(2,sent_2)
if st.button('Confirm',key='confirm_option'):
st.session_state['page_status'] = 'analysis'
st.experimental_rerun()
if st.session_state['page_status']=='analysis':
interv_reps = st.multiselect('Select the types of representations to intervene.',['layer','query','key','value'])
rep_dict = {'layer':'lay','query':'qry','key':'key','value':'val'}
multihead = not st.checkbox('Perform individual head analysis (takes time)')
if not multihead:
heads = st.multiselect('Select heads to intervene.',list(np.arange(1,num_heads+1)))
else:
heads = []
if st.button('Run',key='run'):
st.session_state['reps'] = [rep_dict[rep] for rep in interv_reps]
st.session_state['multihead'] = multihead
st.session_state['heads'] = heads
st.session_state['page_status'] = 'results'
st.experimental_rerun()
if st.session_state['page_status']=='results':
sent_1 = st.session_state['sent_1']
sent_2 = st.session_state['sent_2']
multihead = st.session_state['multihead']
heads = st.session_state['heads']
reps = st.session_state['reps']
option_1_locs, option_2_locs = {}, {}
pron_locs = {}
input_ids_dict = {}
masked_ids_option_1 = {}
masked_ids_option_2 = {}
for sent_id in [1,2]:
option_1_locs[f'sent_{sent_id}'], option_2_locs[f'sent_{sent_id}'] = separate_options(st.session_state[f'option_locs_{sent_id}'])
pron_locs[f'sent_{sent_id}'] = st.session_state[f'mask_locs_{sent_id}']
input_ids_dict[f'sent_{sent_id}'] = tokenizer(st.session_state[f'sent_{sent_id}']).input_ids
masked_ids_option_1[f'sent_{sent_id}'] = mask_out(input_ids_dict[f'sent_{sent_id}'],
pron_locs[f'sent_{sent_id}'],
option_1_locs[f'sent_{sent_id}'],mask_id)
masked_ids_option_2[f'sent_{sent_id}'] = mask_out(input_ids_dict[f'sent_{sent_id}'],
pron_locs[f'sent_{sent_id}'],
option_2_locs[f'sent_{sent_id}'],mask_id)
option_1_tokens_1 = np.array(input_ids_dict['sent_1'])[np.array(option_1_locs['sent_1'])+1]
option_1_tokens_2 = np.array(input_ids_dict['sent_2'])[np.array(option_1_locs['sent_2'])+1]
option_2_tokens_1 = np.array(input_ids_dict['sent_1'])[np.array(option_2_locs['sent_1'])+1]
option_2_tokens_2 = np.array(input_ids_dict['sent_2'])[np.array(option_2_locs['sent_2'])+1]
assert np.all(option_1_tokens_1==option_1_tokens_2) and np.all(option_2_tokens_1==option_2_tokens_2)
option_1_tokens = option_1_tokens_1
option_2_tokens = option_2_tokens_1
interventions = [{'lay':[],'qry':[],'key':[],'val':[]} for i in range(num_layers)]
probs_original = run_intervention(interventions,1,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs)
df = pd.DataFrame(data=[[probs_original[0,0][0],probs_original[1,0][0]],
[probs_original[0,1][0],probs_original[1,1][0]]],
columns=[tokenizer.decode(option_1_tokens),tokenizer.decode(option_2_tokens)],
index=['Sentence 1','Sentence 2'])
cols = st.columns(3)
with cols[1]:
show_instruction('Probability of predicting each option in each sentence',fontsize=12)
st.dataframe(df.style.highlight_max(axis=1),use_container_width=True)
compare_1 = np.array(masked_ids_option_1['sent_1'])!=np.array(masked_ids_option_1['sent_2'])
compare_2 = np.array(masked_ids_option_2['sent_1'])!=np.array(masked_ids_option_2['sent_2'])
assert np.all(compare_1.astype(int)==compare_2.astype(int))
context_locs = list(np.arange(len(masked_ids_option_1['sent_1']))[compare_1]-1) # match the indexing for annotation
assert np.all(np.array(pron_locs['sent_1'])==np.array(pron_locs['sent_2']))
assert np.all(np.array(option_1_locs['sent_1'])==np.array(option_1_locs['sent_2']))
assert np.all(np.array(option_2_locs['sent_1'])==np.array(option_2_locs['sent_2']))
token_id_list = pron_locs['sent_1'] + option_1_locs['sent_1'] + option_2_locs['sent_1'] + context_locs
effect_array = []
for token_id in token_id_list:
token_id += 1
effect_list = []
for layer_id in range(num_layers):
interventions = [create_interventions(token_id,reps,num_heads,multihead,[head_id-1 for head_id in heads])
if i==layer_id else {'lay':[],'qry':[],'key':[],'val':[]} for i in range(num_layers)]
if multihead:
probs = run_intervention(interventions,1,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs)
else:
probs = run_intervention(interventions,len(heads),skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs)
effect = ((probs_original-probs)[0,0] + (probs_original-probs)[1,1] + (probs-probs_original)[0,1] + (probs-probs_original)[1,0])/4
effect_list.append(effect)
effect_array.append(effect_list)
effect_array = np.transpose(np.array(effect_array),(1,0,2))
if multihead:
show_results(effect_array[:,:,0],masked_ids_option_1['sent_1'],token_id_list,num_layers)
else:
tabs = st.tabs([str(head_id) for head_id in heads])
for i,tab in enumerate(tabs):
with tab:
show_results(effect_array[:,:,i],masked_ids_option_1['sent_1'],token_id_list,num_layers)
|