taka-yamakoshi
commited on
Commit
•
c92f27c
1
Parent(s):
5d85885
add custom model
Browse files- custom_modeling_albert_flax.py +471 -0
custom_modeling_albert_flax.py
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import flax
|
6 |
+
import flax.linen as nn
|
7 |
+
import jax
|
8 |
+
import jax.numpy as jnp
|
9 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
10 |
+
from flax.linen.attention import dot_product_attention_weights
|
11 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
12 |
+
from jax import lax
|
13 |
+
|
14 |
+
from transformers import AlbertConfig
|
15 |
+
from transformers.modeling_flax_albert import FlaxAlbertOnlyMLMHead, FlaxAlbertEmbeddings
|
16 |
+
from transformers.modeling_flax_outputs import (
|
17 |
+
FlaxBaseModelOutput,
|
18 |
+
FlaxBaseModelOutputWithPooling,
|
19 |
+
FlaxMaskedLMOutput,
|
20 |
+
FlaxMultipleChoiceModelOutput,
|
21 |
+
FlaxQuestionAnsweringModelOutput,
|
22 |
+
FlaxSequenceClassifierOutput,
|
23 |
+
FlaxTokenClassifierOutput,
|
24 |
+
)
|
25 |
+
from transformers.utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
26 |
+
|
27 |
+
from transformers.modeling_flax_utils import (
|
28 |
+
ACT2FN,
|
29 |
+
FlaxPreTrainedModel,
|
30 |
+
append_call_sample_docstring,
|
31 |
+
append_replace_return_docstrings,
|
32 |
+
overwrite_call_docstring,
|
33 |
+
)
|
34 |
+
|
35 |
+
class CustomFlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
|
36 |
+
module_class = CustomFlaxAlbertForMaskedLMModule
|
37 |
+
|
38 |
+
class CustomFlaxAlbertForMaskedLMModule(nn.Module):
|
39 |
+
config: AlbertConfig
|
40 |
+
dtype: jnp.dtype = jnp.float32
|
41 |
+
|
42 |
+
def setup(self):
|
43 |
+
self.albert = CustomFlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
|
44 |
+
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
45 |
+
|
46 |
+
def __call__(
|
47 |
+
self,
|
48 |
+
input_ids,
|
49 |
+
attention_mask,
|
50 |
+
token_type_ids,
|
51 |
+
position_ids,
|
52 |
+
deterministic: bool = True,
|
53 |
+
output_attentions: bool = False,
|
54 |
+
output_hidden_states: bool = False,
|
55 |
+
return_dict: bool = True,
|
56 |
+
interv_type: str = "swap",
|
57 |
+
interv_dict: dict = {},
|
58 |
+
):
|
59 |
+
# Model
|
60 |
+
outputs = self.albert(
|
61 |
+
input_ids,
|
62 |
+
attention_mask,
|
63 |
+
token_type_ids,
|
64 |
+
position_ids,
|
65 |
+
deterministic=deterministic,
|
66 |
+
output_attentions=output_attentions,
|
67 |
+
output_hidden_states=output_hidden_states,
|
68 |
+
return_dict=return_dict,
|
69 |
+
interv_type=interv_type,
|
70 |
+
interv_dict=interv_dict,
|
71 |
+
)
|
72 |
+
|
73 |
+
hidden_states = outputs[0]
|
74 |
+
if self.config.tie_word_embeddings:
|
75 |
+
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
76 |
+
else:
|
77 |
+
shared_embedding = None
|
78 |
+
|
79 |
+
# Compute the prediction scores
|
80 |
+
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
81 |
+
|
82 |
+
if not return_dict:
|
83 |
+
return (logits,) + outputs[1:]
|
84 |
+
|
85 |
+
return FlaxMaskedLMOutput(
|
86 |
+
logits=logits,
|
87 |
+
hidden_states=outputs.hidden_states,
|
88 |
+
attentions=outputs.attentions,
|
89 |
+
)
|
90 |
+
|
91 |
+
class CustomFlaxAlbertModule(nn.Module):
|
92 |
+
config: AlbertConfig
|
93 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
94 |
+
add_pooling_layer: bool = True
|
95 |
+
|
96 |
+
def setup(self):
|
97 |
+
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
|
98 |
+
self.encoder = CustomFlaxAlbertEncoder(self.config, dtype=self.dtype)
|
99 |
+
if self.add_pooling_layer:
|
100 |
+
self.pooler = nn.Dense(
|
101 |
+
self.config.hidden_size,
|
102 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
103 |
+
dtype=self.dtype,
|
104 |
+
name="pooler",
|
105 |
+
)
|
106 |
+
self.pooler_activation = nn.tanh
|
107 |
+
else:
|
108 |
+
self.pooler = None
|
109 |
+
self.pooler_activation = None
|
110 |
+
|
111 |
+
def __call__(
|
112 |
+
self,
|
113 |
+
input_ids,
|
114 |
+
attention_mask,
|
115 |
+
token_type_ids: Optional[np.ndarray] = None,
|
116 |
+
position_ids: Optional[np.ndarray] = None,
|
117 |
+
deterministic: bool = True,
|
118 |
+
output_attentions: bool = False,
|
119 |
+
output_hidden_states: bool = False,
|
120 |
+
return_dict: bool = True,
|
121 |
+
interv_type: str = "swap",
|
122 |
+
interv_dict: dict = {},
|
123 |
+
):
|
124 |
+
# make sure `token_type_ids` is correctly initialized when not passed
|
125 |
+
if token_type_ids is None:
|
126 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
127 |
+
|
128 |
+
# make sure `position_ids` is correctly initialized when not passed
|
129 |
+
if position_ids is None:
|
130 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
131 |
+
|
132 |
+
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
|
133 |
+
|
134 |
+
outputs = self.encoder(
|
135 |
+
hidden_states,
|
136 |
+
attention_mask,
|
137 |
+
deterministic=deterministic,
|
138 |
+
output_attentions=output_attentions,
|
139 |
+
output_hidden_states=output_hidden_states,
|
140 |
+
return_dict=return_dict,
|
141 |
+
interv_type=interv_type,
|
142 |
+
interv_dict=interv_dict,
|
143 |
+
)
|
144 |
+
hidden_states = outputs[0]
|
145 |
+
if self.add_pooling_layer:
|
146 |
+
pooled = self.pooler(hidden_states[:, 0])
|
147 |
+
pooled = self.pooler_activation(pooled)
|
148 |
+
else:
|
149 |
+
pooled = None
|
150 |
+
|
151 |
+
if not return_dict:
|
152 |
+
# if pooled is None, don't return it
|
153 |
+
if pooled is None:
|
154 |
+
return (hidden_states,) + outputs[1:]
|
155 |
+
return (hidden_states, pooled) + outputs[1:]
|
156 |
+
|
157 |
+
return FlaxBaseModelOutputWithPooling(
|
158 |
+
last_hidden_state=hidden_states,
|
159 |
+
pooler_output=pooled,
|
160 |
+
hidden_states=outputs.hidden_states,
|
161 |
+
attentions=outputs.attentions,
|
162 |
+
)
|
163 |
+
|
164 |
+
class CustomFlaxAlbertEncoder(nn.Module):
|
165 |
+
config: AlbertConfig
|
166 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
167 |
+
|
168 |
+
def setup(self):
|
169 |
+
self.embedding_hidden_mapping_in = nn.Dense(
|
170 |
+
self.config.hidden_size,
|
171 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
172 |
+
dtype=self.dtype,
|
173 |
+
)
|
174 |
+
self.albert_layer_groups = CustomFlaxAlbertLayerGroups(self.config, dtype=self.dtype)
|
175 |
+
|
176 |
+
def __call__(
|
177 |
+
self,
|
178 |
+
hidden_states,
|
179 |
+
attention_mask,
|
180 |
+
deterministic: bool = True,
|
181 |
+
output_attentions: bool = False,
|
182 |
+
output_hidden_states: bool = False,
|
183 |
+
return_dict: bool = True,
|
184 |
+
interv_type: str = "swap",
|
185 |
+
interv_dict: dict = {},
|
186 |
+
):
|
187 |
+
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
|
188 |
+
return self.albert_layer_groups(
|
189 |
+
hidden_states,
|
190 |
+
attention_mask,
|
191 |
+
deterministic=deterministic,
|
192 |
+
output_attentions=output_attentions,
|
193 |
+
output_hidden_states=output_hidden_states,
|
194 |
+
interv_type=interv_type,
|
195 |
+
interv_dict=interv_dict,
|
196 |
+
)
|
197 |
+
|
198 |
+
class CustomFlaxAlbertLayerGroups(nn.Module):
|
199 |
+
config: AlbertConfig
|
200 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
201 |
+
|
202 |
+
def setup(self):
|
203 |
+
self.layers = [
|
204 |
+
CustomFlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
|
205 |
+
for i in range(self.config.num_hidden_groups)
|
206 |
+
]
|
207 |
+
|
208 |
+
def __call__(
|
209 |
+
self,
|
210 |
+
hidden_states,
|
211 |
+
attention_mask,
|
212 |
+
deterministic: bool = True,
|
213 |
+
output_attentions: bool = False,
|
214 |
+
output_hidden_states: bool = False,
|
215 |
+
return_dict: bool = True,
|
216 |
+
interv_type: str = "swap",
|
217 |
+
interv_dict: dict = {},
|
218 |
+
):
|
219 |
+
all_attentions = () if output_attentions else None
|
220 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
221 |
+
|
222 |
+
for i in range(self.config.num_hidden_layers):
|
223 |
+
# Index of the hidden group
|
224 |
+
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
225 |
+
layer_group_output = self.layers[group_idx](
|
226 |
+
hidden_states,
|
227 |
+
attention_mask,
|
228 |
+
deterministic=deterministic,
|
229 |
+
output_attentions=output_attentions,
|
230 |
+
output_hidden_states=output_hidden_states,
|
231 |
+
layer_id=i,
|
232 |
+
interv_type=interv_type,
|
233 |
+
interv_dict=interv_dict,
|
234 |
+
)
|
235 |
+
hidden_states = layer_group_output[0]
|
236 |
+
|
237 |
+
if output_attentions:
|
238 |
+
all_attentions = all_attentions + layer_group_output[-1]
|
239 |
+
|
240 |
+
if output_hidden_states:
|
241 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
242 |
+
|
243 |
+
if not return_dict:
|
244 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
245 |
+
return FlaxBaseModelOutput(
|
246 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
247 |
+
)
|
248 |
+
|
249 |
+
class CustomFlaxAlbertLayerCollections(nn.Module):
|
250 |
+
config: AlbertConfig
|
251 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
252 |
+
layer_index: Optional[str] = None
|
253 |
+
|
254 |
+
def setup(self):
|
255 |
+
self.albert_layers = CustomFlaxAlbertLayerCollection(self.config, dtype=self.dtype)
|
256 |
+
|
257 |
+
def __call__(
|
258 |
+
self,
|
259 |
+
hidden_states,
|
260 |
+
attention_mask,
|
261 |
+
deterministic: bool = True,
|
262 |
+
output_attentions: bool = False,
|
263 |
+
output_hidden_states: bool = False,
|
264 |
+
layer_id: int = None,
|
265 |
+
interv_type: str = "swap",
|
266 |
+
interv_dict: dict = {},
|
267 |
+
):
|
268 |
+
outputs = self.albert_layers(
|
269 |
+
hidden_states,
|
270 |
+
attention_mask,
|
271 |
+
deterministic=deterministic,
|
272 |
+
output_attentions=output_attentions,
|
273 |
+
output_hidden_states=output_hidden_states,
|
274 |
+
layer_id=layer_id,
|
275 |
+
interv_type=interv_type,
|
276 |
+
interv_dict=interv_dict,
|
277 |
+
)
|
278 |
+
return outputs
|
279 |
+
|
280 |
+
class CustomFlaxAlbertLayerCollection(nn.Module):
|
281 |
+
config: AlbertConfig
|
282 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
283 |
+
|
284 |
+
def setup(self):
|
285 |
+
self.layers = [
|
286 |
+
CustomFlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
|
287 |
+
]
|
288 |
+
|
289 |
+
def __call__(
|
290 |
+
self,
|
291 |
+
hidden_states,
|
292 |
+
attention_mask,
|
293 |
+
deterministic: bool = True,
|
294 |
+
output_attentions: bool = False,
|
295 |
+
output_hidden_states: bool = False,
|
296 |
+
layer_id: int = None,
|
297 |
+
interv_type: str = "swap",
|
298 |
+
interv_dict: dict = {},
|
299 |
+
):
|
300 |
+
layer_hidden_states = ()
|
301 |
+
layer_attentions = ()
|
302 |
+
|
303 |
+
for layer_index, albert_layer in enumerate(self.layers):
|
304 |
+
layer_output = albert_layer(
|
305 |
+
hidden_states,
|
306 |
+
attention_mask,
|
307 |
+
deterministic=deterministic,
|
308 |
+
output_attentions=output_attentions,
|
309 |
+
layer_id=layer_id,
|
310 |
+
interv_type=interv_type,
|
311 |
+
interv_dict=interv_dict,
|
312 |
+
)
|
313 |
+
hidden_states = layer_output[0]
|
314 |
+
|
315 |
+
if output_attentions:
|
316 |
+
layer_attentions = layer_attentions + (layer_output[1],)
|
317 |
+
|
318 |
+
if output_hidden_states:
|
319 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
320 |
+
|
321 |
+
outputs = (hidden_states,)
|
322 |
+
if output_hidden_states:
|
323 |
+
outputs = outputs + (layer_hidden_states,)
|
324 |
+
if output_attentions:
|
325 |
+
outputs = outputs + (layer_attentions,)
|
326 |
+
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
327 |
+
|
328 |
+
class CustomFlaxAlbertLayer(nn.Module):
|
329 |
+
config: AlbertConfig
|
330 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
331 |
+
|
332 |
+
def setup(self):
|
333 |
+
self.attention = CustomFlaxAlbertSelfAttention(self.config, dtype=self.dtype)
|
334 |
+
self.ffn = nn.Dense(
|
335 |
+
self.config.intermediate_size,
|
336 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
337 |
+
dtype=self.dtype,
|
338 |
+
)
|
339 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
340 |
+
self.ffn_output = nn.Dense(
|
341 |
+
self.config.hidden_size,
|
342 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
343 |
+
dtype=self.dtype,
|
344 |
+
)
|
345 |
+
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
346 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
347 |
+
|
348 |
+
def __call__(
|
349 |
+
self,
|
350 |
+
hidden_states,
|
351 |
+
attention_mask,
|
352 |
+
deterministic: bool = True,
|
353 |
+
output_attentions: bool = False,
|
354 |
+
layer_id: int = None,
|
355 |
+
interv_type: str = "swap",
|
356 |
+
interv_dict: dict = {},
|
357 |
+
):
|
358 |
+
attention_outputs = self.attention(
|
359 |
+
hidden_states,
|
360 |
+
attention_mask,
|
361 |
+
deterministic=deterministic,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
layer_id=layer_id,
|
364 |
+
interv_type=interv_type,
|
365 |
+
interv_dict=interv_dict,
|
366 |
+
)
|
367 |
+
attention_output = attention_outputs[0]
|
368 |
+
ffn_output = self.ffn(attention_output)
|
369 |
+
ffn_output = self.activation(ffn_output)
|
370 |
+
ffn_output = self.ffn_output(ffn_output)
|
371 |
+
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
|
372 |
+
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
|
373 |
+
|
374 |
+
outputs = (hidden_states,)
|
375 |
+
|
376 |
+
if output_attentions:
|
377 |
+
outputs += (attention_outputs[1],)
|
378 |
+
return outputs
|
379 |
+
|
380 |
+
class CustomFlaxAlbertSelfAttention(nn.Module):
|
381 |
+
config: AlbertConfig
|
382 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
383 |
+
|
384 |
+
def setup(self):
|
385 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
386 |
+
raise ValueError(
|
387 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
388 |
+
" : {self.config.num_attention_heads}"
|
389 |
+
)
|
390 |
+
|
391 |
+
self.query = nn.Dense(
|
392 |
+
self.config.hidden_size,
|
393 |
+
dtype=self.dtype,
|
394 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
395 |
+
)
|
396 |
+
self.key = nn.Dense(
|
397 |
+
self.config.hidden_size,
|
398 |
+
dtype=self.dtype,
|
399 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
400 |
+
)
|
401 |
+
self.value = nn.Dense(
|
402 |
+
self.config.hidden_size,
|
403 |
+
dtype=self.dtype,
|
404 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
405 |
+
)
|
406 |
+
self.dense = nn.Dense(
|
407 |
+
self.config.hidden_size,
|
408 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
409 |
+
dtype=self.dtype,
|
410 |
+
)
|
411 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
412 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
413 |
+
|
414 |
+
def __call__(
|
415 |
+
self,
|
416 |
+
hidden_states,
|
417 |
+
attention_mask,
|
418 |
+
deterministic=True,
|
419 |
+
output_attentions: bool = False,
|
420 |
+
layer_id: int = None,
|
421 |
+
interv_type: str = "swap",
|
422 |
+
interv_dict: dict = {},
|
423 |
+
):
|
424 |
+
head_dim = self.config.hidden_size // self.config.num_attention_heads
|
425 |
+
|
426 |
+
query_states = self.query(hidden_states).reshape(
|
427 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
428 |
+
)
|
429 |
+
value_states = self.value(hidden_states).reshape(
|
430 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
431 |
+
)
|
432 |
+
key_states = self.key(hidden_states).reshape(
|
433 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
434 |
+
)
|
435 |
+
|
436 |
+
# Convert the boolean attention mask to an attention bias.
|
437 |
+
if attention_mask is not None:
|
438 |
+
# attention mask in the form of attention bias
|
439 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
440 |
+
attention_bias = lax.select(
|
441 |
+
attention_mask > 0,
|
442 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
443 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
attention_bias = None
|
447 |
+
|
448 |
+
dropout_rng = None
|
449 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
450 |
+
dropout_rng = self.make_rng("dropout")
|
451 |
+
|
452 |
+
attn_weights = dot_product_attention_weights(
|
453 |
+
query_states,
|
454 |
+
key_states,
|
455 |
+
bias=attention_bias,
|
456 |
+
dropout_rng=dropout_rng,
|
457 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
458 |
+
broadcast_dropout=True,
|
459 |
+
deterministic=deterministic,
|
460 |
+
dtype=self.dtype,
|
461 |
+
precision=None,
|
462 |
+
)
|
463 |
+
|
464 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
465 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
466 |
+
|
467 |
+
projected_attn_output = self.dense(attn_output)
|
468 |
+
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
|
469 |
+
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
|
470 |
+
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
|
471 |
+
return outputs
|