import numpy as np import pandas as pd import streamlit as st import matplotlib.pyplot as plt import seaborn as sns #import jax #import jax.numpy as jnp import torch import torch.nn.functional as F #from custom_modeling_albert_flax import CustomFlaxAlbertForMaskedLM def wide_setup(): max_width = 1500 padding_top = 0 padding_right = 2 padding_bottom = 0 padding_left = 2 define_margins = f""" """ hide_table_row_index = """ """ st.markdown(define_margins, unsafe_allow_html=True) st.markdown(hide_table_row_index, unsafe_allow_html=True) def load_css(file_name): with open(file_name) as f: st.markdown(f'', unsafe_allow_html=True) @st.cache(show_spinner=True,allow_output_mutation=True) def load_model(model_name): if model_name.startswith('albert'): from transformers import AlbertTokenizer, AlbertForMaskedLM from skeleton_modeling_albert import SkeletonAlbertForMaskedLM tokenizer = AlbertTokenizer.from_pretrained(model_name) model = AlbertForMaskedLM.from_pretrained(model_name) skeleton_model = SkeletonAlbertForMaskedLM elif model_name.startswith('bert'): from transformers import BertTokenizer, BertForMaskedLM from skeleton_modeling_bert import SkeletonBertForMaskedLM tokenizer = BertTokenizer.from_pretrained(model_name) model = BertForMaskedLM.from_pretrained(model_name) skeleton_model = SkeletonBertForMaskedLM elif model_name.startswith('roberta'): from transformers import RobertaTokenizer, RobertaForMaskedLM from skeleton_modeling_roberta import SkeletonRobertaForMaskedLM tokenizer = RobertaTokenizer.from_pretrained(model_name) model = RobertaForMaskedLM.from_pretrained(model_name) skeleton_model = SkeletonRobertaForMaskedLM return tokenizer,model,skeleton_model def clear_data(): for key in st.session_state: del st.session_state[key] def annotate_mask(sent_id,sent): show_instruction(f'Sentence {sent_id}',fontsize=16) input_sent = tokenizer(sent).input_ids decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]] st.session_state[f'decoded_sent_{sent_id}'] = decoded_sent char_nums = [len(word)+2 for word in decoded_sent] cols = st.columns(char_nums) if f'mask_locs_{sent_id}' not in st.session_state: st.session_state[f'mask_locs_{sent_id}'] = [] for word_id,(col,word) in enumerate(zip(cols,decoded_sent)): with col: if st.button(word,key=f'word_mask_{sent_id}_{word_id}'): if word_id not in st.session_state[f'mask_locs_{sent_id}']: st.session_state[f'mask_locs_{sent_id}'].append(word_id) else: st.session_state[f'mask_locs_{sent_id}'].remove(word_id) show_annotated_sentence(decoded_sent, mask_locs=st.session_state[f'mask_locs_{sent_id}']) def annotate_options(sent_id,sent): show_instruction(f'Sentence {sent_id}',fontsize=16) input_sent = tokenizer(sent).input_ids decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]] char_nums = [len(word)+2 for word in decoded_sent] cols = st.columns(char_nums) if f'option_locs_{sent_id}' not in st.session_state: st.session_state[f'option_locs_{sent_id}'] = [] for word_id,(col,word) in enumerate(zip(cols,decoded_sent)): with col: if st.button(word,key=f'word_option_{sent_id}_{word_id}'): if word_id not in st.session_state[f'option_locs_{sent_id}']: st.session_state[f'option_locs_{sent_id}'].append(word_id) else: st.session_state[f'option_locs_{sent_id}'].remove(word_id) show_annotated_sentence(decoded_sent, option_locs=st.session_state[f'option_locs_{sent_id}'], mask_locs=st.session_state[f'mask_locs_{sent_id}']) st.session_state[f'option_locs_{sent_id}'] = list(np.sort(st.session_state[f'option_locs_{sent_id}'])) st.session_state[f'mask_locs_{sent_id}'] = list(np.sort(st.session_state[f'mask_locs_{sent_id}'])) def show_annotated_sentence(sent,option_locs=[],mask_locs=[]): disp_style = '"font-family:san serif; color:Black; font-size: 20px"' prefix = f'
' style_list = [] for i, word in enumerate(sent): if i in mask_locs: style_list.append(f'{word}') elif i in option_locs: style_list.append(f'{word}') else: style_list.append(f'{word}') disp = ' '.join(style_list) suffix = '
' return st.markdown(prefix + disp + suffix, unsafe_allow_html = True) def show_instruction(sent,fontsize=20): disp_style = f'"font-family:san serif; color:Black; font-size: {fontsize}px"' prefix = f'' suffix = '
' return st.markdown(prefix + sent + suffix, unsafe_allow_html = True) def create_interventions(token_id,interv_types,num_heads,multihead=False,heads=[]): interventions = {} for rep in ['lay','qry','key','val']: if rep in interv_types: if multihead: interventions[rep] = [(head_id,token_id,[0,1]) for head_id in range(num_heads)] else: interventions[rep] = [(head_id,token_id,[i,i+len(heads)]) for i,head_id in enumerate(heads)] else: interventions[rep] = [] return interventions def separate_options(option_locs): assert np.sum(np.diff(option_locs)>1)==1 sep = list(np.diff(option_locs)>1).index(1)+1 option_1_locs, option_2_locs = option_locs[:sep], option_locs[sep:] if len(option_1_locs)>1: assert np.all(np.diff(option_1_locs)==1) if len(option_2_locs)>1: assert np.all(np.diff(option_2_locs)==1) return option_1_locs, option_2_locs def mask_out(input_ids,pron_locs,option_locs,mask_id): if len(pron_locs)>1: assert np.all(np.diff(pron_locs)==1) # note annotations are shifted by 1 because special tokens were omitted return input_ids[:pron_locs[0]+1] + [mask_id for _ in range(len(option_locs))] + input_ids[pron_locs[-1]+2:] def run_intervention(interventions,batch_size,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs): probs = [] for masked_ids, option_tokens in zip([masked_ids_option_1, masked_ids_option_2],[option_1_tokens,option_2_tokens]): input_ids = torch.tensor([ *[masked_ids['sent_1'] for _ in range(batch_size)], *[masked_ids['sent_2'] for _ in range(batch_size)] ]) outputs = skeleton_model(model,input_ids,interventions=interventions) logprobs = F.log_softmax(outputs['logits'], dim = -1) logprobs_1, logprobs_2 = logprobs[:batch_size], logprobs[batch_size:] evals_1 = [logprobs_1[:,pron_locs['sent_1'][0]+1+i,token].numpy() for i,token in enumerate(option_tokens)] evals_2 = [logprobs_2[:,pron_locs['sent_2'][0]+1+i,token].numpy() for i,token in enumerate(option_tokens)] probs.append([np.exp(np.mean(evals_1,axis=0)),np.exp(np.mean(evals_2,axis=0))]) probs = np.array(probs) assert probs.shape[0]==2 and probs.shape[1]==2 and probs.shape[2]==batch_size return probs def show_results(effect_array,masked_sent,token_id_list,num_layers): cols = st.columns(len(masked_sent)-2) for col_id,col in enumerate(cols): with col: st.write(tokenizer.decode([masked_sent[col_id+1]])) if col_id in token_id_list: interv_id = token_id_list.index(col_id) fig,ax = plt.subplots() ax.set_box_aspect(num_layers) ax.imshow(effect_array[:,interv_id:interv_id+1],cmap=sns.color_palette("light:r", as_cmap=True), vmin=effect_array.min(),vmax=effect_array.max()) ax.set_xticks([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_yticklabels([]) ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) st.pyplot(fig) if __name__=='__main__': wide_setup() load_css('style.css') if 'page_status' not in st.session_state: st.session_state['page_status'] = 'model_selection' if st.session_state['page_status']=='model_selection': show_instruction('0. Select the model and click "Confirm"',fontsize=16) model_name = st.selectbox('Please select the model from below.', ('bert-base-uncased','bert-large-cased', 'roberta-base','roberta-large', 'albert-base-v2','albert-large-v2','albert-xlarge-v2','albert-xxlarge-v2'), index=3,label_visibility='collapsed') st.session_state['model_name'] = model_name if st.button('Confirm',key='confirm_models'): st.session_state['page_status'] = 'type_in' st.experimental_rerun() if st.session_state['page_status']!='model_selection': tokenizer,model,skeleton_model = load_model(st.session_state['model_name']) num_layers, num_heads = model.config.num_hidden_layers, model.config.num_attention_heads mask_id = tokenizer(tokenizer.mask_token).input_ids[1:-1][0] if st.session_state['page_status']=='type_in': show_instruction('1. Type in the sentences and click "Tokenize"',fontsize=16) sent_1 = st.text_input('Sentence 1',value="Paul tried to call George on the phone, but he wasn't successful.") sent_2 = st.text_input('Sentence 2',value="Paul tried to call George on the phone, but he wasn't available.") if st.button('Tokenize'): st.session_state['page_status'] = 'annotate_mask' st.session_state['sent_1'] = sent_1 st.session_state['sent_2'] = sent_2 st.experimental_rerun() if st.session_state['page_status']=='annotate_mask': sent_1 = st.session_state['sent_1'] sent_2 = st.session_state['sent_2'] show_instruction('2. Select sites to mask out and click "Confirm"',fontsize=16) #show_instruction('------------------------------',fontsize=32) annotate_mask(1,sent_1) show_instruction('------------------------------',fontsize=24) annotate_mask(2,sent_2) if st.button('Confirm',key='confirm_mask'): st.session_state['page_status'] = 'annotate_options' st.experimental_rerun() if st.session_state['page_status'] == 'annotate_options': sent_1 = st.session_state['sent_1'] sent_2 = st.session_state['sent_2'] show_instruction('3. Select options and click "Confirm"',fontsize=16) #show_instruction('------------------------------',fontsize=32) annotate_options(1,sent_1) show_instruction('------------------------------',fontsize=24) annotate_options(2,sent_2) if st.button('Confirm',key='confirm_option'): st.session_state['page_status'] = 'analysis' st.experimental_rerun() if st.session_state['page_status']=='analysis': interv_reps = st.multiselect('Select the types of representations to intervene.',['layer','query','key','value']) rep_dict = {'layer':'lay','query':'qry','key':'key','value':'val'} multihead = not st.checkbox('Perform individual head analysis (takes time)') if not multihead: heads = st.multiselect('Select heads to intervene.',list(np.arange(1,num_heads+1))) else: heads = [] if st.button('Run',key='run'): st.session_state['reps'] = [rep_dict[rep] for rep in interv_reps] st.session_state['multihead'] = multihead st.session_state['heads'] = heads st.session_state['page_status'] = 'results' st.experimental_rerun() if st.session_state['page_status']=='results': sent_1 = st.session_state['sent_1'] sent_2 = st.session_state['sent_2'] multihead = st.session_state['multihead'] heads = st.session_state['heads'] reps = st.session_state['reps'] option_1_locs, option_2_locs = {}, {} pron_locs = {} input_ids_dict = {} masked_ids_option_1 = {} masked_ids_option_2 = {} for sent_id in [1,2]: option_1_locs[f'sent_{sent_id}'], option_2_locs[f'sent_{sent_id}'] = separate_options(st.session_state[f'option_locs_{sent_id}']) pron_locs[f'sent_{sent_id}'] = st.session_state[f'mask_locs_{sent_id}'] input_ids_dict[f'sent_{sent_id}'] = tokenizer(st.session_state[f'sent_{sent_id}']).input_ids masked_ids_option_1[f'sent_{sent_id}'] = mask_out(input_ids_dict[f'sent_{sent_id}'], pron_locs[f'sent_{sent_id}'], option_1_locs[f'sent_{sent_id}'],mask_id) masked_ids_option_2[f'sent_{sent_id}'] = mask_out(input_ids_dict[f'sent_{sent_id}'], pron_locs[f'sent_{sent_id}'], option_2_locs[f'sent_{sent_id}'],mask_id) option_1_tokens_1 = np.array(input_ids_dict['sent_1'])[np.array(option_1_locs['sent_1'])+1] option_1_tokens_2 = np.array(input_ids_dict['sent_2'])[np.array(option_1_locs['sent_2'])+1] option_2_tokens_1 = np.array(input_ids_dict['sent_1'])[np.array(option_2_locs['sent_1'])+1] option_2_tokens_2 = np.array(input_ids_dict['sent_2'])[np.array(option_2_locs['sent_2'])+1] assert np.all(option_1_tokens_1==option_1_tokens_2) and np.all(option_2_tokens_1==option_2_tokens_2) option_1_tokens = option_1_tokens_1 option_2_tokens = option_2_tokens_1 interventions = [{'lay':[],'qry':[],'key':[],'val':[]} for i in range(num_layers)] probs_original = run_intervention(interventions,1,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs) df = pd.DataFrame(data=[[probs_original[0,0][0],probs_original[1,0][0]], [probs_original[0,1][0],probs_original[1,1][0]]], columns=[tokenizer.decode(option_1_tokens),tokenizer.decode(option_2_tokens)], index=['Sentence 1','Sentence 2']) cols = st.columns(3) with cols[1]: show_instruction('Probability of predicting each option in each sentence',fontsize=12) st.dataframe(df.style.highlight_max(axis=1),use_container_width=True) compare_1 = np.array(masked_ids_option_1['sent_1'])!=np.array(masked_ids_option_1['sent_2']) compare_2 = np.array(masked_ids_option_2['sent_1'])!=np.array(masked_ids_option_2['sent_2']) assert np.all(compare_1.astype(int)==compare_2.astype(int)) context_locs = list(np.arange(len(masked_ids_option_1['sent_1']))[compare_1]-1) # match the indexing for annotation assert np.all(np.array(pron_locs['sent_1'])==np.array(pron_locs['sent_2'])) assert np.all(np.array(option_1_locs['sent_1'])==np.array(option_1_locs['sent_2'])) assert np.all(np.array(option_2_locs['sent_1'])==np.array(option_2_locs['sent_2'])) token_id_list = pron_locs['sent_1'] + option_1_locs['sent_1'] + option_2_locs['sent_1'] + context_locs effect_array = [] for token_id in token_id_list: token_id += 1 effect_list = [] for layer_id in range(num_layers): interventions = [create_interventions(token_id,reps,num_heads,multihead,[head_id-1 for head_id in heads]) if i==layer_id else {'lay':[],'qry':[],'key':[],'val':[]} for i in range(num_layers)] if multihead: probs = run_intervention(interventions,1,skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs) else: probs = run_intervention(interventions,len(heads),skeleton_model,model,masked_ids_option_1,masked_ids_option_2,option_1_tokens,option_2_tokens,pron_locs) effect = ((probs_original-probs)[0,0] + (probs_original-probs)[1,1] + (probs-probs_original)[0,1] + (probs-probs_original)[1,0])/4 effect_list.append(effect) effect_array.append(effect_list) effect_array = np.transpose(np.array(effect_array),(1,0,2)) if multihead: show_results(effect_array[:,:,0],masked_ids_option_1['sent_1'],token_id_list,num_layers) else: tabs = st.tabs([str(head_id) for head_id in heads]) for i,tab in enumerate(tabs): with tab: show_results(effect_array[:,:,i],masked_ids_option_1['sent_1'],token_id_list,num_layers)