taltaf9133's picture
Update app.py
d5f211f
import random
import matplotlib.pyplot as plt
from PIL import Image
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler
import gradio
from gradio.components import Textbox, Image
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler
pipe = StableDiffusionPipeline.from_pretrained("taltaf9133/finetuned-stable-diffusion-log", torch_dtype=torch.float32) #.to('cuda')
#pipe.enable_xformers_memory_efficient_attention()
prompt = "tv with sofa, realistic, hd, vivid"
negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
num_samples = 1
guidance_scale = 7.5
num_inference_steps = 5
height = 512
width = 512
#seed = random.randint(0, 2147483647)
#print("Seed: {}".format(str(seed)))
#generator = torch.Generator(device='cuda').manual_seed(seed)
def predict(prompt, negative_prompt):
#with autocast("cuda"), torch.inference_mode():
img = pipe(
prompt,
negative_prompt=negative_prompt,
height=height, width=width,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
#generator=generator
).images[0]
return img
title = "Stable Diffusion Demo"
description = "Stable diffusion demo"
# Input from user
neg_p = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
in_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default="ldg with scn style", label='Enter prompt')
in_neg_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default=neg_p, label='Enter negative prompt')
# Output response
out_response = Image(label="Generated image:")
# Create the Gradio demo
demo = gradio.Interface(fn=predict, # mapping function from input to output
inputs=[in_prompt, in_neg_prompt],
outputs=gradio.Image(),
title=title,
description=description,)
# Launch the demo!
demo.launch(debug = True)