Spaces:
Runtime error
Runtime error
taltaf9133
commited on
Commit
·
f20af30
1
Parent(s):
5c8f1c8
test
Browse files- app.py +67 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import autocast
|
8 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
9 |
+
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from gradio.components import Textbox, Image
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import autocast
|
17 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
18 |
+
|
19 |
+
pipe = StableDiffusionPipeline.from_pretrained("taltaf9133/finetuned-stable-diffusion-log", torch_dtype=torch.float32) #.to('cuda')
|
20 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
21 |
+
|
22 |
+
prompt = "tv with sofa, realistic, hd, vivid"
|
23 |
+
negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
|
24 |
+
num_samples = 1
|
25 |
+
guidance_scale = 7.5
|
26 |
+
num_inference_steps = 30
|
27 |
+
height = 512
|
28 |
+
width = 512
|
29 |
+
|
30 |
+
#seed = random.randint(0, 2147483647)
|
31 |
+
#print("Seed: {}".format(str(seed)))
|
32 |
+
#generator = torch.Generator(device='cuda').manual_seed(seed)
|
33 |
+
|
34 |
+
def predict(prompt, negative_prompt):
|
35 |
+
#with autocast("cuda"), torch.inference_mode():
|
36 |
+
img = pipe(
|
37 |
+
prompt,
|
38 |
+
negative_prompt=negative_prompt,
|
39 |
+
height=height, width=width,
|
40 |
+
num_images_per_prompt=num_samples,
|
41 |
+
num_inference_steps=num_inference_steps,
|
42 |
+
guidance_scale=guidance_scale,
|
43 |
+
#generator=generator
|
44 |
+
).images[0]
|
45 |
+
return img
|
46 |
+
|
47 |
+
title = "Stable Diffusion Demo"
|
48 |
+
description = "Stable diffusion demo"
|
49 |
+
|
50 |
+
|
51 |
+
# Input from user
|
52 |
+
neg_p = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark"
|
53 |
+
in_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default="ldg with scn style", label='Enter prompt')
|
54 |
+
in_neg_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default=neg_p, label='Enter negative prompt')
|
55 |
+
|
56 |
+
# Output response
|
57 |
+
out_response = Image(label="Generated image:")
|
58 |
+
|
59 |
+
# Create the Gradio demo
|
60 |
+
demo = gradio.Interface(fn=predict, # mapping function from input to output
|
61 |
+
inputs=[in_prompt, in_neg_prompt],
|
62 |
+
outputs=gradio.Image(),
|
63 |
+
title=title,
|
64 |
+
description=description,)
|
65 |
+
|
66 |
+
# Launch the demo!
|
67 |
+
demo.launch(debug = True, share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
transformers
|
3 |
+
ftfy
|
4 |
+
bitsandbytes==0.35.0
|
5 |
+
natsort
|
6 |
+
safetensors
|
7 |
+
xformers
|
8 |
+
diffusers
|
9 |
+
gradio
|