import random import matplotlib.pyplot as plt from PIL import Image import torch from torch import autocast from diffusers import StableDiffusionPipeline, DDIMScheduler import gradio from gradio.components import Textbox, Image import torch from torch import autocast from diffusers import StableDiffusionPipeline, DDIMScheduler pipe = StableDiffusionPipeline.from_pretrained("taltaf9133/finetuned-stable-diffusion-log", torch_dtype=torch.float32) #.to('cuda') #pipe.enable_xformers_memory_efficient_attention() prompt = "tv with sofa, realistic, hd, vivid" negative_prompt = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark" num_samples = 1 guidance_scale = 7.5 num_inference_steps = 30 height = 512 width = 512 #seed = random.randint(0, 2147483647) #print("Seed: {}".format(str(seed))) #generator = torch.Generator(device='cuda').manual_seed(seed) def predict(prompt, negative_prompt): #with autocast("cuda"), torch.inference_mode(): img = pipe( prompt, negative_prompt=negative_prompt, height=height, width=width, num_images_per_prompt=num_samples, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, #generator=generator ).images[0] return img title = "Stable Diffusion Demo" description = "Stable diffusion demo" # Input from user neg_p = "bad anatomy, ugly, deformed, desfigured, distorted, blurry, low quality, low definition, lowres, out of frame, out of image, cropped, cut off, signature, watermark" in_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default="ldg with scn style", label='Enter prompt') in_neg_prompt = gradio.inputs.Textbox(lines=5, placeholder=None, default=neg_p, label='Enter negative prompt') # Output response out_response = Image(label="Generated image:") # Create the Gradio demo demo = gradio.Interface(fn=predict, # mapping function from input to output inputs=[in_prompt, in_neg_prompt], outputs=gradio.Image(), title=title, description=description,) # Launch the demo! demo.launch(debug = True, share=True)