IMCAP / app.py
tanthinhdt's picture
Update app.py
3a61959 verified
import torch
import urllib
import streamlit as st
from io import BytesIO
from time import time
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor
def scale_image(image: Image.Image, target_height: int = 500) -> Image.Image:
"""
Scale an image to a target height while maintaining the aspect ratio.
Parameters
----------
image : Image.Image
The image to scale.
target_height : int, optional (default=500)
The target height of the image.
Returns
-------
Image.Image
The scaled image.
"""
width, height = image.size
aspect_ratio = width / height
target_width = int(aspect_ratio * target_height)
return image.resize((target_width, target_height))
def upload_image() -> None:
"""
Upload an image.
"""
if st.session_state.file_uploader is not None:
st.session_state.image = Image.open(st.session_state.file_uploader)
def read_image_from_url() -> None:
"""
Read an image from a URL.
"""
if st.session_state.image_url is not None:
with urllib.request.urlopen(st.session_state.image_url) as response:
st.session_state.image = Image.open(BytesIO(response.read()))
def inference() -> None:
"""
Perform inference on an image and generate a caption.
"""
start_time = time()
outputs = st.session_state.processor(
images=st.session_state.image,
return_tensors="pt",
)
outputs = {k: v.to(st.session_state.device.lower()) for k, v in outputs.items()}
st.session_state.model.to(st.session_state.device.lower())
logits = st.session_state.model.generate(
**outputs,
max_length=st.session_state.max_length,
num_beams=st.session_state.num_beams,
)
caption = st.session_state.processor.decode(
logits[0], skip_special_tokens=True
)
end_time = time()
st.session_state.inference_time = round(end_time - start_time, 2)
st.session_state.caption = caption
st.session_state.model.to("cpu")
torch.cuda.empty_cache()
def main() -> None:
"""
Main function for the Streamlit app.
"""
if "model" not in st.session_state:
st.session_state.model = AutoModelForVision2Seq.from_pretrained(
"tanthinhdt/blip-base_with-pretrained_flickr30k",
cache_dir="models/huggingface",
)
st.session_state.model.eval()
if "processor" not in st.session_state:
st.session_state.processor = AutoProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base",
cache_dir="models/huggingface",
)
if "image" not in st.session_state:
st.session_state.image = None
if "caption" not in st.session_state:
st.session_state.caption = None
if "inference_time" not in st.session_state:
st.session_state.inference_time = 0.0
# Set page configuration
st.set_page_config(
page_title="Image Captioning App",
page_icon="๐Ÿ“ธ",
initial_sidebar_state="expanded",
)
# Set sidebar layout
st.sidebar.header("Workspace")
st.sidebar.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png"],
accept_multiple_files=False,
on_change=upload_image,
key="file_uploader",
help="Upload an image to generate a caption.",
)
st.sidebar.text_input(
"Image URL",
on_change=read_image_from_url,
key="image_url",
help="Enter the URL of an image to generate a caption.",
)
st.sidebar.divider()
st.sidebar.header("Settings")
st.sidebar.selectbox(
label="Device",
options=["CPU", "CUDA"],
index=1 if torch.cuda.is_available() else 0,
key="device",
help="The device to use for inference.",
)
st.sidebar.number_input(
label="Max length",
min_value=32,
max_value=128,
value=64,
step=1,
key="max_length",
help="The maximum length of the generated caption.",
)
st.sidebar.number_input(
label="Number of beams",
min_value=1,
max_value=10,
value=4,
step=1,
key="num_beams",
help="The number of beams to use during decoding.",
)
# Set main layout
st.markdown(
"""
<h1 style='text-align: center;'>
Image Captioning
</h1>
""",
unsafe_allow_html=True,
)
st.divider()
image_container = st.container(height=450)
st.divider()
col_1, col_2, col_3 = st.columns([1, 1, 2])
resolution_display = col_1.empty()
runtime_display = col_2.empty()
caption_display = col_3.empty()
# Display the image and generate a caption
if st.session_state.image is not None:
image_container.image(scale_image(st.session_state.image, target_height=400))
resolution_display.metric(
label="Image Resolution",
value=f"{st.session_state.image.width}x{st.session_state.image.height}",
)
with st.spinner("Generating caption..."):
inference()
caption_display.text_area(
label="Caption",
value=st.session_state.caption,
)
runtime_display.metric(
label="Inference Time",
value=f"{st.session_state.inference_time}s",
)
if __name__ == "__main__":
main()