import torch import urllib import streamlit as st from io import BytesIO from time import time from PIL import Image from transformers import AutoModelForVision2Seq, AutoProcessor def scale_image(image: Image.Image, target_height: int = 500) -> Image.Image: """ Scale an image to a target height while maintaining the aspect ratio. Parameters ---------- image : Image.Image The image to scale. target_height : int, optional (default=500) The target height of the image. Returns ------- Image.Image The scaled image. """ width, height = image.size aspect_ratio = width / height target_width = int(aspect_ratio * target_height) return image.resize((target_width, target_height)) def upload_image() -> None: """ Upload an image. """ if st.session_state.file_uploader is not None: st.session_state.image = Image.open(st.session_state.file_uploader) def read_image_from_url() -> None: """ Read an image from a URL. """ if st.session_state.image_url is not None: with urllib.request.urlopen(st.session_state.image_url) as response: st.session_state.image = Image.open(BytesIO(response.read())) def inference() -> None: """ Perform inference on an image and generate a caption. """ start_time = time() outputs = st.session_state.processor( images=st.session_state.image, return_tensors="pt", ) outputs = {k: v.to(st.session_state.device.lower()) for k, v in outputs.items()} st.session_state.model.to(st.session_state.device.lower()) logits = st.session_state.model.generate( **outputs, max_length=st.session_state.max_length, num_beams=st.session_state.num_beams, ) caption = st.session_state.processor.decode( logits[0], skip_special_tokens=True ) end_time = time() st.session_state.inference_time = round(end_time - start_time, 2) st.session_state.caption = caption st.session_state.model.to("cpu") torch.cuda.empty_cache() def main() -> None: """ Main function for the Streamlit app. """ if "model" not in st.session_state: st.session_state.model = AutoModelForVision2Seq.from_pretrained( "tanthinhdt/blip-base_with-pretrained_flickr30k", cache_dir="models/huggingface", ) st.session_state.model.eval() if "processor" not in st.session_state: st.session_state.processor = AutoProcessor.from_pretrained( "Salesforce/blip-image-captioning-base", cache_dir="models/huggingface", ) if "image" not in st.session_state: st.session_state.image = None if "caption" not in st.session_state: st.session_state.caption = None if "inference_time" not in st.session_state: st.session_state.inference_time = 0.0 # Set page configuration st.set_page_config( page_title="Image Captioning App", page_icon="📸", initial_sidebar_state="expanded", ) # Set sidebar layout st.sidebar.header("Workspace") st.sidebar.file_uploader( "Upload an image", type=["jpg", "jpeg", "png"], accept_multiple_files=False, on_change=upload_image, key="file_uploader", help="Upload an image to generate a caption.", ) st.sidebar.text_input( "Image URL", on_change=read_image_from_url, key="image_url", help="Enter the URL of an image to generate a caption.", ) st.sidebar.divider() st.sidebar.header("Settings") st.sidebar.selectbox( label="Device", options=["CPU", "CUDA"], index=1 if torch.cuda.is_available() else 0, key="device", help="The device to use for inference.", ) st.sidebar.number_input( label="Max length", min_value=32, max_value=128, value=64, step=1, key="max_length", help="The maximum length of the generated caption.", ) st.sidebar.number_input( label="Number of beams", min_value=1, max_value=10, value=4, step=1, key="num_beams", help="The number of beams to use during decoding.", ) # Set main layout st.markdown( """