import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection import torch def anylize(img): # input_image_path = os.path.join(os.getcwd(), img.get_data()[0].name) # return input_image_path image = img processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("taroii/finetuned-detr-50") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) #target_sizes = torch.tensor([image.size]) #target_sizes = torch.tensor([image.size[::-1]]) target_sizes = torch.tensor([image.shape[:2]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] return( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) # return "Hello " + img + "!" app = gr.Interface(fn=anylize, inputs="image", outputs="text") #server_port=8000, server_name="0.0.0.0", app.launch()