Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
gr.Interface.load("models/taroii/notfinetuned-detr-50").launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel
|
4 |
+
import supervision as sv
|
5 |
+
from supervision.detection.annotate import BoxAnnotator
|
6 |
+
from supervision.utils.notebook import plot_image
|
7 |
+
|
8 |
+
og_model = 'facebook/detr-resnet-50'
|
9 |
+
image_processor = DetrImageProcessor.from_pretrained(og_model)
|
10 |
+
model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50")
|
11 |
+
|
12 |
+
def query(image):
|
13 |
+
with torch.no_grad():
|
14 |
+
# load image and predict
|
15 |
+
inputs = image_processor(images=image, return_tensors='pt')
|
16 |
+
outputs = model(**inputs)
|
17 |
+
|
18 |
+
# post-process
|
19 |
+
target_sizes = torch.tensor([image.shape[:2]])
|
20 |
+
results = image_processor.post_process_object_detection(
|
21 |
+
outputs=outputs,
|
22 |
+
threshold=CONFIDENCE_TRESHOLD,
|
23 |
+
target_sizes=target_sizes
|
24 |
+
)[0]
|
25 |
+
|
26 |
+
# annotate
|
27 |
+
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5)
|
28 |
+
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections]
|
29 |
+
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
|
30 |
+
|
31 |
+
print('detections')
|
32 |
+
%matplotlib inline
|
33 |
+
plot_image(frame, (16, 16))
|
34 |
+
|
35 |
+
return labels, frame
|
36 |
|
37 |
gr.Interface.load("models/taroii/notfinetuned-detr-50").launch()
|