import gradio as gr import torch from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel import supervision as sv from supervision.detection.annotate import BoxAnnotator from supervision.utils.notebook import plot_image og_model = 'facebook/detr-resnet-50' image_processor = DetrImageProcessor.from_pretrained(og_model) model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50") def query(image): with torch.no_grad(): # load image and predict inputs = image_processor(images=image, return_tensors='pt') outputs = model(**inputs) # post-process target_sizes = torch.tensor([image.shape[:2]]) results = image_processor.post_process_object_detection( outputs=outputs, threshold=CONFIDENCE_TRESHOLD, target_sizes=target_sizes )[0] # annotate detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections] frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) plot_image(frame, (16, 16)) return labels, frame gr.Interface.load("models/taroii/notfinetuned-detr-50").launch()