import gradio as gr import torch from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel import supervision as sv from supervision.detection.annotate import BoxAnnotator from supervision.utils.notebook import plot_image import cv2 CONFIDENCE_TRESHOLD = 0.5 IOU_TRESHOLD = 0.8 og_model = 'facebook/detr-resnet-50' image_processor = DetrImageProcessor.from_pretrained(og_model) model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50") def predict(image_path): image = cv2.imread(image_path) with torch.no_grad(): # load image and predict inputs = image_processor(images=image, return_tensors='pt') outputs = model(**inputs) # post-process target_sizes = torch.tensor([image.shape[:2]]) results = image_processor.post_process_object_detection( outputs=outputs, threshold=CONFIDENCE_TRESHOLD, target_sizes=target_sizes )[0] # annotate detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections] frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) #return plot_image(frame, (16, 16)) return frame gr.Interface( predict, inputs=gr.inputs.Image(label="Upload X-Ray Image", type="filepath"), outputs=gr.Image(), title="Non-Fine-Tuned Model" ).launch()