Spaces:
Runtime error
Runtime error
File size: 14,077 Bytes
ce6a2ba 9cac99a 92791b4 ce6a2ba f09cc2c ce6a2ba 9cac99a b975e18 ce6a2ba 57eed52 9cac99a ce6a2ba 92791b4 ce6a2ba 92791b4 9cac99a ce6a2ba 9cac99a 92791b4 9cac99a ce6a2ba 9cac99a ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 93c89d0 ce6a2ba 9cac99a ce6a2ba e227e49 ce6a2ba e227e49 f09cc2c 9cac99a ce6a2ba 618a546 747e065 618a546 ce6a2ba e227e49 93c89d0 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import time
import sys
import streamlit as st
import string
from io import StringIO
import pdb
import json
from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
import torch
import requests
import socket
MAX_INPUT = 100
SEM_SIMILARITY="1"
DOC_RETRIEVAL="2"
CLUSTERING="3"
use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"}
use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":""}
from transformers import BertTokenizer, BertForMaskedLM
APP_NAME = "hf/semantic_search"
INFO_URL = "http://www.taskswithcode.com/stats/"
def get_views(action):
ret_val = 0
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
if ("view_count" not in st.session_state):
try:
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
print(res)
data = res["count"]
except:
data = 0
ret_val = data
st.session_state["view_count"] = data
else:
ret_val = st.session_state["view_count"]
if (action != "init"):
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
return "{:,}".format(ret_val)
def construct_model_info_for_display(model_names):
options_arr = []
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Huggingface</i></div>"
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == "True"):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
if ("Note" in node):
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
limit = "{:,}".format(MAX_INPUT)
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">• User uploaded file has a maximum limit of {limit} sentences.</div>"
return options_arr,markdown_str
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for tasks using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
@st.experimental_memo
def load_model(model_name,model_class,load_model_name):
try:
ret_model = None
obj_class = globals()[model_class]
ret_model = obj_class()
ret_model.init_model(load_model_name)
assert(ret_model is not None)
except Exception as e:
st.error("Unable to load model:" + model_name + " " + load_model_name + " " + str(e))
pass
return ret_model
@st.experimental_memo
def cached_compute_similarity(sentences,_model,model_name,main_index):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
return results
def uncached_compute_similarity(sentences,_model,model_name,main_index):
with st.spinner('Computing vectors for sentences'):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
#st.success("Similarity computation complete")
return results
DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
def get_model_info(model_names,model_name):
for node in model_names:
if (model_name == node["name"]):
return node,model_name
return get_model_info(model_names,DEFAULT_HF_MODEL)
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded,custom_model):
display_area.text("Loading model:" + model_name)
#Note. model_name may get mapped to new name in the call below for custom models
orig_model_name = model_name
model_info,model_name = get_model_info(model_names,model_name)
if (model_name != orig_model_name):
load_model_name = orig_model_name
else:
load_model_name = model_info["model"]
if ("Note" in model_info):
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
display_area.write(fail_link)
model = load_model(model_name,model_info["class"],load_model_name)
display_area.text("Model " + model_name + " load complete")
try:
if (user_uploaded):
results = uncached_compute_similarity(sentences,model,model_name,main_index)
else:
display_area.text("Computing vectors for sentences")
results = cached_compute_similarity(sentences,model,model_name,main_index)
display_area.text("Similarity computation complete")
return results
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
st.stop()
return {}
def display_results(orig_sentences,main_index,results,response_info,app_mode,model_name):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model: <b>{model_name}</b></div>"
score_text = "cosine distance" if app_mode == SEM_SIMILARITY else "cosine distance/score"
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
pivot_name = pivot_name[0].upper() + pivot_name[1:]
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{pivot_name}:</b> {orig_sentences[main_index]}</div>"
body_sent = []
download_data = {}
first = True
for key in results:
if (app_mode == DOC_RETRIEVAL and first):
first = False
continue
index = orig_sentences.index(key) + 1
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}] {key} <b>{results[key]:.2f}</b></div>")
download_data[key] = f"{results[key]:.2f}"
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.session_state["download_ready"] = json.dumps(download_data,indent=4)
get_views("submit")
def init_session():
if ("model_name" not in st.session_state):
st.session_state["model_name"] = "ss_test"
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["main_index"] = 1
st.session_state["file_name"] = "default"
else:
print("Skipping init session")
def app_main(app_mode,example_files,model_name_files):
init_session()
with open(example_files) as fp:
example_file_names = json.load(fp)
with open(model_name_files) as fp:
model_names = json.load(fp)
curr_use_case = use_case[app_mode].split(".")[0]
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for tasks using sentence embeddings</h5>", unsafe_allow_html=True)
st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • <a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/> • {use_case['2']}<br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
step1_line = "Step 1. Upload text file(one sentence in a line) or choose an example text file below"
if (app_mode == DOC_RETRIEVAL):
step1_line += ". The first line is treated as the query"
uploaded_file = st.file_uploader(step1_line, type=".txt")
selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})',
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
st.write("")
options_arr,markdown_str = construct_model_info_for_display(model_names)
selection_label = 'Step 2. Select Model'
selected_model = st.selectbox(label=selection_label,
options = options_arr, index=0, key = "twc_model")
st.write("")
custom_model_selection = st.text_input("Model not listed above? Type any Huggingface semantic search model name ", "",key="custom_model")
hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Huggingface semantic search models</a><br/><br/><br/></div>"
st.markdown(hf_link_str, unsafe_allow_html=True)
if (app_mode == SEM_SIMILARITY):
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
else:
main_index = 1
st.write("")
submit_button = st.form_submit_button('Run')
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
else:
st.session_state["file_name"] = example_file_names[selected_file_index]["name"]
sentences = open(example_file_names[selected_file_index]["name"]).read()
sentences = sentences.split("\n")[:-1]
if (len(sentences) < main_index):
main_index = len(sentences)
st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index))
if (len(sentences) > MAX_INPUT):
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
sentences = sentences[:MAX_INPUT]
if (len(custom_model_selection) != 0):
run_model = custom_model_selection
else:
run_model = selected_model
st.session_state["model_name"] = selected_model
st.session_state["main_index"] = main_index
results = run_test(model_names,run_model,sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
display_area.empty()
with display_area.container():
device = 'GPU' if torch.cuda.is_available() else 'CPU'
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
if (len(custom_model_selection) != 0):
st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
#st.json(results)
st.download_button(
label="Download results as json",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
mime='text/json',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
#print("comand line input:",len(sys.argv),str(sys.argv))
#app_main(sys.argv[1],sys.argv[2],sys.argv[3])
#app_main("1","sim_app_examples.json","sim_app_models.json")
app_main("2","doc_app_examples.json","doc_app_models.json")
|