Spaces:
Runtime error
Runtime error
File size: 10,647 Bytes
ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba e227e49 ce6a2ba b65a786 ce6a2ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
[
{ "name":"SGPT-125M-Search",
"model":"Muennighoff/SGPT-125M-weightedmean-msmarco-specb-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":"True",
"class":"SGPTQnAModel"},
{ "name":"GPT-Neo-125M",
"model":"EleutherAI/gpt-neo-125M",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://www.eleuther.ai/",
"orig_author":"EleuthorAI",
"sota_info": {
"task":"Top 20 in multiple NLP tasks (smaller variant)",
"sota_link":"https://paperswithcode.com/paper/gpt-neox-20b-an-open-source-autoregressive-1"
},
"paper_url":"https://zenodo.org/record/5551208#.YyV0k-zMLX0",
"mark":"True",
"class":"CausalLMModel"},
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
"model":"sentence-transformers/all-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 3.8 million downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 2 million downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
"model":"sentence-transformers/bert-base-nli-mean-tokens",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 700,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-mpnet-base-v2",
"model":"sentence-transformers/all-mpnet-base-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
"model":"sentence-transformers/all-MiniLM-L12-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"SGPT-125M",
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":"True",
"class":"SGPTModel"},
{ "name":"SIMCSE-base" ,
"model":"princeton-nlp/sup-simcse-roberta-base",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":"True",
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
{ "name":"GPT-3-175B (text-search-davinci-doc-001)" ,
"model":"text-search-davinci-doc-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-6.7B (text-search-curie-doc-001)" ,
"model":"text-search-curie-doc-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-1.3B (text-search-babbage-doc-001)" ,
"model":"text-search-babbage-doc-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-350M (text-search-ada-doc-001)" ,
"model":"text-search-ada-doc-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIQnAModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}
]
|