Spaces:
Runtime error
Runtime error
File size: 18,005 Bytes
e56ce5e 0242b2e e56ce5e 0242b2e 1e9f08c 0242b2e 50cfa80 e56ce5e 0242b2e e56ce5e 0242b2e 44fc84f 0242b2e e56ce5e 0242b2e 43f46f9 942d759 0242b2e e56ce5e 43f46f9 942d759 e56ce5e 0242b2e 70d91d0 4ab3b97 0242b2e e56ce5e 0242b2e e56ce5e 0242b2e e56ce5e 0242b2e e56ce5e 0242b2e e56ce5e 0242b2e e56ce5e f050e78 e56ce5e 1b9fec9 e56ce5e 44fc84f e56ce5e 942d759 1e9f08c 942d759 e56ce5e 0242b2e e56ce5e 042b8a4 e56ce5e 43f46f9 e56ce5e 43f46f9 e56ce5e 0242b2e 1b9fec9 e56ce5e 6ad0c29 e56ce5e 44fc84f e56ce5e 6ad0c29 e56ce5e 102b976 1e9f08c e56ce5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import time
import streamlit as st
import string
from io import StringIO
import pdb
import json
from twc_embeddings import HFModel,SimCSEModel,SGPTModel
import torch
MAX_INPUT = 100
from transformers import BertTokenizer, BertForMaskedLM
model_names = [
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
"model":"sentence-transformers/all-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 3.8 million downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 2.4 million downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
"model":"sentence-transformers/bert-base-nli-mean-tokens",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 700,000 downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
{ "name":"sentence-transformers/all-mpnet-base-v2",
"model":"sentence-transformers/all-mpnet-base-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
"model":"sentence-transformers/all-MiniLM-L12-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
{ "name":"SGPT-125M",
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":True,
"class":"SGPTModel"},
{ "name":"SGPT-1.3B",
"model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"mark":True,
"class":"SGPTModel"},
{ "name":"SGPT-5.8B",
"model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":True,
"class":"SGPTModel"},
{ "name":"SIMCSE-large" ,
"model":"princeton-nlp/sup-simcse-roberta-large",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"Note":"If this large model takes too long or fails to load , try this ",
"alt_url":"http://www.taskswithcode.com/sentence_similarity/",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":True,
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
{ "name":"SIMCSE-base" ,
"model":"princeton-nlp/sup-simcse-roberta-base",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":True,
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
]
example_file_names = {
"Machine learning terms (30+ phrases)": "small_test.txt",
"Customer feedback mixed with noise (50+ sentences)":"larger_test.txt"
}
view_count_file = "view_count.txt"
def get_views():
ret_val = 0
if ("view_count" not in st.session_state):
try:
data = int(open(view_count_file).read().strip("\n"))
except:
data = 0
data += 1
ret_val = data
st.session_state["view_count"] = data
with open(view_count_file,"w") as fp:
fp.write(str(data))
else:
ret_val = st.session_state["view_count"]
return "{:,}".format(ret_val)
def construct_model_info_for_display():
options_arr = []
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == True):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
if ("Note" in node):
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not saved</div>"
limit = "{:,}".format(MAX_INPUT)
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">• User uploaded file has a maximum limit of {limit} sentences.</div>"
return options_arr,markdown_str
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for Sentence Similarity task', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
@st.experimental_memo
def load_model(model_name):
try:
ret_model = None
for node in model_names:
if (model_name.startswith(node["name"])):
obj_class = globals()[node["class"]]
ret_model = obj_class()
ret_model.init_model(node["model"])
assert(ret_model is not None)
except Exception as e:
st.error("Unable to load model:" + model_name + " " + str(e))
pass
return ret_model
@st.experimental_memo
def cached_compute_similarity(sentences,_model,model_name,main_index):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
return results
def uncached_compute_similarity(sentences,_model,model_name,main_index):
with st.spinner('Computing vectors for sentences'):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
#st.success("Similarity computation complete")
return results
def get_model_info(model_name):
for node in model_names:
if (model_name == node["name"]):
return node
def run_test(model_name,sentences,display_area,main_index,user_uploaded):
display_area.text("Loading model:" + model_name)
model_info = get_model_info(model_name)
if ("Note" in model_info):
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
display_area.write(fail_link)
model = load_model(model_name)
display_area.text("Model " + model_name + " load complete")
try:
if (user_uploaded):
results = uncached_compute_similarity(sentences,model,model_name,main_index)
else:
display_area.text("Computing vectors for sentences")
results = cached_compute_similarity(sentences,model,model_name,main_index)
display_area.text("Similarity computation complete")
return results
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
st.stop()
return {}
def display_results(orig_sentences,main_index,results,response_info):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
main_sent += "<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by cosine distance. Closest(1) to furthest(-1) away from main sentence</div>"
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>Main sentence:</b> {orig_sentences[main_index]}</div>"
body_sent = []
download_data = {}
for key in results:
index = orig_sentences.index(key) + 1
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}] {key} <b>{results[key]:.2f}</b></div>")
download_data[key] = f"{results[key]:.2f}"
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.session_state["download_ready"] = json.dumps(download_data,indent=4)
def init_session():
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["main_index"] = 1
st.session_state["file_name"] = "default"
def main():
init_session()
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for Sentence Similarity task</h5>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views()}</div>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
uploaded_file = st.file_uploader("Step 1. Upload text file(one sentence in a line) or choose an example text file below", type=".txt")
selected_file_index = st.selectbox(label='Example files ',
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
st.write("")
options_arr,markdown_str = construct_model_info_for_display()
selection_label = 'Step 2. Select Model'
selected_model = st.selectbox(label=selection_label,
options = options_arr, index=0, key = "twc_model")
st.write("")
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
st.write("")
submit_button = st.form_submit_button('Run')
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
else:
st.session_state["file_name"] = example_file_names[selected_file_index]
sentences = open(example_file_names[selected_file_index]).read()
sentences = sentences.split("\n")[:-1]
if (len(sentences) < main_index):
main_index = len(sentences)
st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index))
if (len(sentences) > MAX_INPUT):
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
sentences = sentences[:MAX_INPUT]
st.session_state["model_name"] = selected_model
st.session_state["main_index"] = main_index
results = run_test(selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
display_area.empty()
with display_area.container():
device = 'GPU' if torch.cuda.is_available() else 'CPU'
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
display_results(sentences,main_index - 1,results,response_info)
#st.json(results)
st.download_button(
label="Download results as json",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
mime='text/json',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
main()
|