File size: 10,300 Bytes
e56ce5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import time
import streamlit as st
import string
from io import StringIO 
import json
from transformers import BertTokenizer, BertForMaskedLM

MAX_INPUT = 1000

model_names = [
            {   "name":"SGPT-125M", 
                "model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
                "mark":False,
                "class":"SGPTModel"},


            {   "name":"SGPT-5.8B",
                "model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
                "fork_url":"https://github.com/taskswithcode/sgpt",
                "orig_author_url":"https://github.com/Muennighoff",
                "orig_author":"Niklas Muennighoff",
                "sota_info": {   
                                 "task":"#1 in multiple information retrieval & search tasks",
                                 "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
                            },
                "paper_url":"https://arxiv.org/abs/2202.08904v5",
                "mark":True,
                "class":"SGPTModel"},

            {   "name":"SGPT-1.3B",
                "model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
                "mark":False,
                "class":"SGPTModel"},

            {   "name":"sentence-transformers/all-MiniLM-L6-v2", 
                "model":"sentence-transformers/all-MiniLM-L6-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Nearly 4 million downloads from huggingface",
                                 "sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":True,
                "class":"HFModel"},

            ]



example_file_names = {
"Machine learning terms (30+ phrases)": "tests/small_test.txt",
"Customer feedback mixed with noise (50+ sentences)":"tests/larger_test.txt"
}


def construct_model_info_for_display():
    options_arr  = []
    markdown_str = "<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated</b></div>"
    for node in model_names:
        options_arr .append(node["name"])
        if (node["mark"] == True):
            markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Forked <a href=\'{node['fork_url']}\' target='_blank'>code</a><br/><br/></div>"
    markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not saved</div>"
    limit = "{:,}".format(MAX_INPUT)
    markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
    return options_arr,markdown_str


st.set_page_config(page_title='TWC - Compare state-of-the-art models for Sentence Similarity task', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
            menu_items={
             'About': 'This app was created by taskswithcode. http://taskswithcode.com'
              })
col,pad = st.columns([85,15])

with col:
    st.image("long_form_logo_with_icon.png")


@st.experimental_memo
def load_model(model_name):
    try:
        ret_model = None
        for node in model_names:
            if (model_name.startswith(node["name"])):
                obj_class = globals()[node["class"]]
                ret_model = obj_class()
                ret_model.init_model(node["model"])
        assert(ret_model is not None)
    except Exception as e:
        st.error("Unable to load model:" + model_name + " " +  str(e))
        pass
    return ret_model

  
@st.experimental_memo
def cached_compute_similarity(sentences,_model,model_name,main_index):
    texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
    results = _model.output_results(None,texts,embeddings,main_index)
    return results


def uncached_compute_similarity(sentences,_model,model_name,main_index):
    with st.spinner('Computing vectors for sentences'):
        texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
        results = _model.output_results(None,texts,embeddings,main_index)
    #st.success("Similarity computation complete")
    return results

def run_test(model_name,sentences,display_area,main_index,user_uploaded):
    display_area.text("Loading model:" + model_name)
    model = load_model(model_name)
    display_area.text("Model " + model_name  + " load complete")
    try:
            if (user_uploaded):
                results = uncached_compute_similarity(sentences,model,model_name,main_index)
            else:
                display_area.text("Computing vectors for sentences")
                results = cached_compute_similarity(sentences,model,model_name,main_index)
                display_area.text("Similarity computation complete")
            return results
            
    except Exception as e:
        st.error("Some error occurred during prediction" + str(e))
        st.stop()
    return {}



    

def display_results(orig_sentences,main_index,results,response_info):
    main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
    main_sent += "<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by cosine distance. Closest(1) to furthest(-1) away from main sentence</div>"
    main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>Main sentence:</b>&nbsp;&nbsp;{orig_sentences[main_index]}</div>"
    body_sent = []
    download_data = {}
    for key in results:
        index = orig_sentences.index(key) + 1
        body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}]&nbsp;{key}&nbsp;&nbsp;&nbsp;<b>{results[key]:.2f}</b></div>")
        download_data[key] =  f"{results[key]:.2f}" 
    main_sent = main_sent + "\n" + '\n'.join(body_sent)
    st.markdown(main_sent,unsafe_allow_html=True)
    st.session_state["download_ready"] = json.dumps(download_data,indent=4)


def init_session():
    st.session_state["download_ready"] = None    
    st.session_state["model_name"] = "ss_test"
    st.session_state["main_index"] = 1
    st.session_state["file_name"] = "default"
 
def main():
  init_session()
  st.markdown("<h4 style='text-align: center;'>Compare state-of-the-art models for Sentence Similarity task</h4>", unsafe_allow_html=True)


  try:
      
      
      with st.form('twc_form'):

        uploaded_file = st.file_uploader("Step 1. Upload text file(one sentence in a line) or choose an example text file below.", type=".txt")

        selected_file_index = st.selectbox(label='Example files ',  
                    options = list(dict.keys(example_file_names)), index=0,  key = "twc_file")
        st.write("")
        options_arr,markdown_str = construct_model_info_for_display()
        selected_model = st.selectbox(label='Step 2. Select Model',  
                    options = options_arr, index=0,  key = "twc_model")
        st.write("")
        main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence:',value=1,min_value = 1)
        st.write("")
        submit_button = st.form_submit_button('Run')

        
        input_status_area = st.empty()
        display_area = st.empty()
        if submit_button:
            start = time.time()
            if uploaded_file is not None:
                st.session_state["file_name"]  = uploaded_file.name
                sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
            else:
                st.session_state["file_name"]  = example_file_names[selected_file_index]
                sentences = open(example_file_names[selected_file_index]).read()
            sentences = sentences.split("\n")[:-1]
            if (len(sentences) < main_index):
                main_index = len(sentences)
                st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index)) 
            if (len(sentences) > MAX_INPUT):
                st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
                sentences = sentences[:MAX_INPUT]
            st.session_state["model_name"] = selected_model
            st.session_state["main_index"] = main_index
            results = run_test(selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
            display_area.empty()
            with display_area.container():
                response_info = f"Response time - {time.time() - start:.2f} secs for {len(sentences)} sentences"
                display_results(sentences,main_index - 1,results,response_info)
                #st.json(results)
      st.download_button(
         label="Download results as json",
         data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
         disabled = False if st.session_state["download_ready"] != None else True,
         file_name= (st.session_state["model_name"] + "_" +  str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
         mime='text/json',
         key ="download" 
        )
      
      

  except Exception as e:
    st.error("Some error occurred during loading" + str(e))
    st.stop()  
	
  st.markdown(markdown_str, unsafe_allow_html=True)
  
 

if __name__ == "__main__":
   main()