Spaces:
Runtime error
Runtime error
taskswithcode
commited on
Commit
•
e45aab0
1
Parent(s):
002e3e5
Fixes
Browse files- app.py +35 -18
- sim_app_models.json +5 -5
app.py
CHANGED
@@ -59,7 +59,8 @@ def get_views(action):
|
|
59 |
|
60 |
def construct_model_info_for_display(model_names):
|
61 |
options_arr = []
|
62 |
-
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>"
|
|
|
63 |
for node in model_names:
|
64 |
options_arr .append(node["name"])
|
65 |
if (node["mark"] == "True"):
|
@@ -86,17 +87,15 @@ with col:
|
|
86 |
|
87 |
|
88 |
@st.experimental_memo
|
89 |
-
def load_model(model_name,
|
90 |
try:
|
91 |
ret_model = None
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
ret_model = obj_class()
|
96 |
-
ret_model.init_model(node["model"])
|
97 |
assert(ret_model is not None)
|
98 |
except Exception as e:
|
99 |
-
st.error("Unable to load model:" + model_name + " " + str(e))
|
100 |
pass
|
101 |
return ret_model
|
102 |
|
@@ -115,18 +114,26 @@ def uncached_compute_similarity(sentences,_model,model_name,main_index):
|
|
115 |
#st.success("Similarity computation complete")
|
116 |
return results
|
117 |
|
|
|
118 |
def get_model_info(model_names,model_name):
|
119 |
for node in model_names:
|
120 |
if (model_name == node["name"]):
|
121 |
-
return node
|
|
|
122 |
|
123 |
-
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded):
|
124 |
display_area.text("Loading model:" + model_name)
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
if ("Note" in model_info):
|
127 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
128 |
display_area.write(fail_link)
|
129 |
-
model = load_model(model_name,
|
130 |
display_area.text("Model " + model_name + " load complete")
|
131 |
try:
|
132 |
if (user_uploaded):
|
@@ -146,9 +153,10 @@ def run_test(model_names,model_name,sentences,display_area,main_index,user_uploa
|
|
146 |
|
147 |
|
148 |
|
149 |
-
def display_results(orig_sentences,main_index,results,response_info,app_mode):
|
150 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
151 |
-
|
|
|
152 |
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
|
153 |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
|
154 |
pivot_name = pivot_name[0].upper() + pivot_name[1:]
|
@@ -183,7 +191,8 @@ def app_main(app_mode,example_files,model_name_files):
|
|
183 |
with open(model_name_files) as fp:
|
184 |
model_names = json.load(fp)
|
185 |
curr_use_case = use_case[app_mode].split(".")[0]
|
186 |
-
st.markdown("<h5 style='text-align: center;'>Compare
|
|
|
187 |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • {use_case['1']}<br/> • <a href=\'{use_case_url['2']}\' target='_blank'>{use_case['2']}</a><br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
|
188 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
|
189 |
|
@@ -206,6 +215,9 @@ def app_main(app_mode,example_files,model_name_files):
|
|
206 |
selected_model = st.selectbox(label=selection_label,
|
207 |
options = options_arr, index=0, key = "twc_model")
|
208 |
st.write("")
|
|
|
|
|
|
|
209 |
if (app_mode == SEM_SIMILARITY):
|
210 |
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
|
211 |
else:
|
@@ -231,14 +243,19 @@ def app_main(app_mode,example_files,model_name_files):
|
|
231 |
if (len(sentences) > MAX_INPUT):
|
232 |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
|
233 |
sentences = sentences[:MAX_INPUT]
|
234 |
-
|
|
|
|
|
|
|
|
|
235 |
st.session_state["main_index"] = main_index
|
236 |
-
|
|
|
237 |
display_area.empty()
|
238 |
with display_area.container():
|
239 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
240 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
241 |
-
display_results(sentences,main_index - 1,results,response_info,app_mode)
|
242 |
#st.json(results)
|
243 |
st.download_button(
|
244 |
label="Download results as json",
|
|
|
59 |
|
60 |
def construct_model_info_for_display(model_names):
|
61 |
options_arr = []
|
62 |
+
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>These are either state-of-the-art or the most downloaded models on Huggingface</i></div>"
|
63 |
+
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
|
64 |
for node in model_names:
|
65 |
options_arr .append(node["name"])
|
66 |
if (node["mark"] == "True"):
|
|
|
87 |
|
88 |
|
89 |
@st.experimental_memo
|
90 |
+
def load_model(model_name,model_class,load_model_name):
|
91 |
try:
|
92 |
ret_model = None
|
93 |
+
obj_class = globals()[model_class]
|
94 |
+
ret_model = obj_class()
|
95 |
+
ret_model.init_model(load_model_name)
|
|
|
|
|
96 |
assert(ret_model is not None)
|
97 |
except Exception as e:
|
98 |
+
st.error("Unable to load model:" + model_name + " " + load_model_name + " " + str(e))
|
99 |
pass
|
100 |
return ret_model
|
101 |
|
|
|
114 |
#st.success("Similarity computation complete")
|
115 |
return results
|
116 |
|
117 |
+
DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
|
118 |
def get_model_info(model_names,model_name):
|
119 |
for node in model_names:
|
120 |
if (model_name == node["name"]):
|
121 |
+
return node,model_name
|
122 |
+
return get_model_info(model_names,DEFAULT_HF_MODEL)
|
123 |
|
124 |
+
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded,custom_model):
|
125 |
display_area.text("Loading model:" + model_name)
|
126 |
+
#Note. model_name may get mapped to new name in the call below for custom models
|
127 |
+
orig_model_name = model_name
|
128 |
+
model_info,model_name = get_model_info(model_names,model_name)
|
129 |
+
if (model_name != orig_model_name):
|
130 |
+
load_model_name = orig_model_name
|
131 |
+
else:
|
132 |
+
load_model_name = model_info["model"]
|
133 |
if ("Note" in model_info):
|
134 |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
|
135 |
display_area.write(fail_link)
|
136 |
+
model = load_model(model_name,model_info["class"],load_model_name)
|
137 |
display_area.text("Model " + model_name + " load complete")
|
138 |
try:
|
139 |
if (user_uploaded):
|
|
|
153 |
|
154 |
|
155 |
|
156 |
+
def display_results(orig_sentences,main_index,results,response_info,app_mode,model_name):
|
157 |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
|
158 |
+
main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model: <b>{model_name}</b></div>"
|
159 |
+
score_text = "cosine distance" if app_mode == SEM_SIMILARITY else "cosine distance/score"
|
160 |
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
|
161 |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
|
162 |
pivot_name = pivot_name[0].upper() + pivot_name[1:]
|
|
|
191 |
with open(model_name_files) as fp:
|
192 |
model_names = json.load(fp)
|
193 |
curr_use_case = use_case[app_mode].split(".")[0]
|
194 |
+
st.markdown("<h5 style='text-align: center;'>Compare state-of-the-art/popular models for tasks using sentence embeddings</h5>", unsafe_allow_html=True)
|
195 |
+
st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
|
196 |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • {use_case['1']}<br/> • <a href=\'{use_case_url['2']}\' target='_blank'>{use_case['2']}</a><br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
|
197 |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views('init')}</div>", unsafe_allow_html=True)
|
198 |
|
|
|
215 |
selected_model = st.selectbox(label=selection_label,
|
216 |
options = options_arr, index=0, key = "twc_model")
|
217 |
st.write("")
|
218 |
+
custom_model_selection = st.text_input("Model not listed on above? Type any Huggingface sentence similarity model name ", "",key="custom_model")
|
219 |
+
hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Huggingface sentence similarity models</a><br/><br/><br/></div>"
|
220 |
+
st.markdown(hf_link_str, unsafe_allow_html=True)
|
221 |
if (app_mode == SEM_SIMILARITY):
|
222 |
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
|
223 |
else:
|
|
|
243 |
if (len(sentences) > MAX_INPUT):
|
244 |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
|
245 |
sentences = sentences[:MAX_INPUT]
|
246 |
+
if (len(custom_model_selection) != 0):
|
247 |
+
run_model = custom_model_selection
|
248 |
+
else:
|
249 |
+
run_model = selected_model
|
250 |
+
st.session_state["model_name"] = run_model
|
251 |
st.session_state["main_index"] = main_index
|
252 |
+
|
253 |
+
results = run_test(model_names,run_model,sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
|
254 |
display_area.empty()
|
255 |
with display_area.container():
|
256 |
device = 'GPU' if torch.cuda.is_available() else 'CPU'
|
257 |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
|
258 |
+
display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
|
259 |
#st.json(results)
|
260 |
st.download_button(
|
261 |
label="Download results as json",
|
sim_app_models.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"orig_author_url":"https://github.com/UKPLab",
|
7 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
8 |
"sota_info": {
|
9 |
-
"task":"Over 3.8 million downloads from
|
10 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
11 |
},
|
12 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
@@ -18,7 +18,7 @@
|
|
18 |
"orig_author_url":"https://github.com/UKPLab",
|
19 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
20 |
"sota_info": {
|
21 |
-
"task":"Over 2 million downloads from
|
22 |
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
23 |
},
|
24 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
@@ -30,7 +30,7 @@
|
|
30 |
"orig_author_url":"https://github.com/UKPLab",
|
31 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
32 |
"sota_info": {
|
33 |
-
"task":"Over 700,000 downloads from
|
34 |
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
35 |
},
|
36 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
@@ -42,7 +42,7 @@
|
|
42 |
"orig_author_url":"https://github.com/UKPLab",
|
43 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
44 |
"sota_info": {
|
45 |
-
"task":"Over 500,000 downloads from
|
46 |
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
47 |
},
|
48 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
@@ -54,7 +54,7 @@
|
|
54 |
"orig_author_url":"https://github.com/UKPLab",
|
55 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
56 |
"sota_info": {
|
57 |
-
"task":"Over 500,000 downloads from
|
58 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
59 |
},
|
60 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
6 |
"orig_author_url":"https://github.com/UKPLab",
|
7 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
8 |
"sota_info": {
|
9 |
+
"task":"Over 3.8 million downloads from Huggingface",
|
10 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
|
11 |
},
|
12 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
18 |
"orig_author_url":"https://github.com/UKPLab",
|
19 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
20 |
"sota_info": {
|
21 |
+
"task":"Over 2 million downloads from Huggingface",
|
22 |
"sota_link":"https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2"
|
23 |
},
|
24 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
30 |
"orig_author_url":"https://github.com/UKPLab",
|
31 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
32 |
"sota_info": {
|
33 |
+
"task":"Over 700,000 downloads from Huggingface",
|
34 |
"sota_link":"https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens"
|
35 |
},
|
36 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
42 |
"orig_author_url":"https://github.com/UKPLab",
|
43 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
44 |
"sota_info": {
|
45 |
+
"task":"Over 500,000 downloads from Huggingface",
|
46 |
"sota_link":"https://huggingface.co/sentence-transformers/all-mpnet-base-v2"
|
47 |
},
|
48 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|
|
|
54 |
"orig_author_url":"https://github.com/UKPLab",
|
55 |
"orig_author":"Ubiquitous Knowledge Processing Lab",
|
56 |
"sota_info": {
|
57 |
+
"task":"Over 500,000 downloads from Huggingface",
|
58 |
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2"
|
59 |
},
|
60 |
"paper_url":"https://arxiv.org/abs/1908.10084",
|